
AD-A241 647 PAGAD-A2 1 647Form Approved
__lI l I11 II 111lA No. 0704-01

la. REPORT SKCURITY CI b. RESTRICTIVE MARKINGS

U N C L A SS I F ... . _
Za. SECURITY CLASSIFICATION AU ITP' - ' 3. DISTRIBUTION /AVAILABILITY OF REPORT

. - z% Approved for public resease;
2b. DECLASSIFICATION/DOWNGR.NG S distribution unlimited.

4. PERFORMING ORGANIZATION gq.ff NUMBER S. MONITORING ORGANIZATION REPORT NUMBER(S)

GIT-89-008 N/A AfOSR.TR. 9 1_ 0 8 1
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applica ble) Air Force Office of Scientific Research (AFOSR
Georgia Institute of Technology Directorate of Physical and Geophysical Scienc

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

School of Physics AFOSR/NP
Georgia Institute of Technology Bolling Air Force Base, Bldg. 410
Atlanta, Georgia 30332 Washington, D. C. 20332-6448

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AFOSR NP AFOSR-89-0426
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

B d PROGRAM PROJECT TASK IWORK UNIT

Building,410 ELEMENT NO. NO NO ACCESSION NO.

Boiling AFB, D. C. 20332-6448 61102F

11. TITLE (Include Security Classification)

Termolecular Association and Laser-Assisted Electron-(Excited) Atom Collisions

12. PERSONAL AUTHOR(S) M. R. Flannery

13a. TYPE OF REPORT o- 1q.[ 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Technical Report FROM 7/1/90 TO 630/91 8/23/91 136

16. SUPPLEMENTARY NOTATION i _ 1 i

17. COSATI CODES 16. SUBJECT TERMS (Continue on revere if necessary and identify by block number)
FIELD GROUP SUB-GROUP Electron Collisions, Laser Field, Dressed Atoms,

Termolecular Association, Excitation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This Second Annual Technical Report provides results of research performed during
the period 7/1/90 - 6/30/91. Theoretical research was conducted on (a) laser-assisted
electron-(excited) atom collisions, (b) electron-atom collisions and (c) termolecular
association. Details of this research are included as Appendices (A) - (D) of this
report.

91-13080

20, DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECUk,,r LLA1FICATION
t UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSBLE INDIVIDUAL ZZb. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. Ralph E. Kelley (202) 767-49WI NPDO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

I. ' L) ~ :' ~ 6UNCLASSIFIED
1.0 "



Abstract - Second Annual Technical Report
(7/1/90- 6/30/91)

THIS SECOND ANNUAL TECHNICAL REPORT PROVIDES RESULTS OF RESEARCH UNDER-
TAKEN IN THE PERIOD 7/1/90 - 6/30/91. THEORETICAL RESEARCH WAS CONDUCTED ON

(A) LASER-ASSISTED ELECTRON-(EXCITED) ATOM COLLISIONS,

e- + A+ Nhw -e- + A* + Mhw

(B) ELECTRON-EXCITED ATOM COLLISIONS,

e- + A* -e- + A**
e. + ++ e-

AND,

(C) TERMOLECULAR ASSOCIATION.

A + B - M- AB + M

DETAILS OF THIS RESEARCH ARE INCLUDED AS APPENDICES (A)-(D) OF THIS REPORT.
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1. ACCOMPLISHMENTS DUE TO AFOSR SUPPORT:

PRINCIPAL INVESTIGATOR: M. R. Flannery
School of Physics, Georgia Institute of Te :hnology
Grant AFOSR-89-0426, Period 7/1/90 - 6/30/91
Project Task: 2301/A4

1.1 RESEARCH OBJECTIVES AND DEVELOPMENTS

The objective of the present research program is to formulate, develop and implement new theoretical
descriptions of the following atomic and molecular processes (A-C) below.

(A) Laser-Assisted Collisions: A new theory of laser-assisted electron-(excited) atom collisions,

e- + A+nhu- e- + A* + mhv (1)

in which the dressed states of the atom A in the laser field are closely coupled and the Volkov states of the
projectile electron in the laser field are included has been developed by M. R. Flannery and P. H. G. Smith.
One paper has already been published, a second is in process of publication and a third has been submitted
for publication. See Appendices (A)-(C).

(B) Termolecular Recombination: The transport-collisional set of Master equations for Temolec-
ular Recombination,

A + B + M -. AB + M (2)

as a function of gas density has been developed by M. R. Flannery. See Appendix (D).

(C) Angular Momentum Changes in Collisions with excited atoms: Work is progressing on
the cross sections for angular momentum changes,

A + B(n) -A + B + e- (e.')

in heavy-particle and electron-atom (e-B) collisions where the target atom is initially in an excited state.
The cross sections for n - ct ' collisional transitions increase as t' is increased until a maximum t ax

is attained after which the cross sections decrease preciptously. M. R. Flannery and A. Haffad have shown
that this effect not only can be explained by a previous quantum description of Flannery and McCann, but
also by classical scattering.

3



1.2 RESEARCH COMPLETED DURING CURRENT PERIOD (7/1/90 - 6/30/91)

Within this yearly period, the following projects were investigated, completed and written up for pub-
lication:

A. Ph. D. Thesis: 'A Semiclassical Treatment of Laser Assisted Collisions in a Soft-Photon Weak-Field
Regime', by P. H. G. Smith, Georgia Institute of Technology (Ph.D. awarded 6/3/91)

B. Papers in Press and submitted for publication:
1. 'Electron-Atom Collisions in a Laser Field', by P. H. G. Smith and M. R. Flannery, Nucl. Lnstr.

Meths. Phys. Res. B 56/57 (1991) 166-9. Appendix A.
2. 'ELectron-Hydrogeit Collisions in a Laser Field', by P. H. G. Smith and M. R. Flannery, J. Phys. B:

At. Mol. Opt. Phys. 1991 (in press), Appendix B.
3. 'Electron-Hydrogen Collisions with Dressed Target and Volkov Projectile States in a Laser Field',

by P. H. G. Smith and M. R. Flannery, 3. Phy. B: At. Mol. Opt. Phys. 1991 (submitted for publication),
Appendix C.

4. 'Transport-Collisional Master Equations for Termolecular Recombination as a function of Gas Den-
sity', by M. R. Flannery, 3. Chem. Phys. 1991 (in press Oct. issue), Appendix D.

1.3 RESEARCH COMPLETED DURING PREVIOUS PERIOD (7/1/89 - 6/30/90) AND
WRITTEN UP AND PUBLISHED DURING CURRENT PERIOD
(7/1/90 - 6/30/91).

1. 'Recombination Processes', M. R. Flannery in Molecular Processes in Space, 'Physics of Atoms and
Molecules' series, edited by T. Watanabe, I. Shimamura, M. Shimizu and Y. Itikawa (Plenum Press, London,
1990) Chapter 7.

2. 'Electron Collision Cross Sections Involving Excited States' E. J. Marsky in Nonequilhbrium Processes
in Partzally Ionized Gases, NATO ASI series B: Physics vol. 220, edited by ML. Capitelli and 3. N. Baidsley,
Plenum Press 1990, pages 349-55.

3. 'The Issue of Basis Set Size in e- + H(Is - 2s, 2p) Collisions', E. 3. Mansky and M. R. Flannery, 3.
Phys. B: At. Mol. Opt. Phys. 23 L501-507 (1990).

4. 'Polarization Fractions for the 21P, 31P and 31D states of Helium' E. 3. Mansky and M. R. Flannery,
3. Phys. B: At. Mol. Opt. Phys. 23 3987-02 (1990).

5. 'The Multichannel Eikonal Theory of Electron-Hydrogen Collisions I. Excitation of H(ls)' E. 3.
Mansky and M. R. Flannery 3. Phys. B: At. Mol. Opt. Phys. 23 4549-72 (1990).

6. 'The Multichannel Eikonal Theory of Electron-Helium Collisions I. Excitation of He(11S)' E. 3.
Mansky and M. R. Flannery, J. Phys. B: At. Mol. Opt. Phys. 23 4573-4604 (1990).

7. 'Electron-Metastable Helium Differential and Integral Cross Sections' E. 3. Mansky and M. R.
Flannery, 3. Phys. B: At. Mol. Opt. Phys. in press

8. 'Indirect Coupling Mechanisms and Stokes Parameters foi Electron-Atom Scattering' E. 3. Mansky
and M. R. Flnnery, 3. Phys. B: At. Mol. Opt. Phys. in press

Above publications nos. I and 5-8 were included as Appendices B-F of the previous Annual Technical
Report GIT-89-001 for the period 7/1/89 - 6/30/90 . Six (6) reprints of the first six papers (section 1.3
nos. 1-6 above) are enclosed separtely with this annual report to AFOSR under report numbers GIT-89-002,
-003, -004, -005, -006 and -007, respectively. Reprints of the remaining papers nos. 7 and 8 will be sent to
AFOSR when available.
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1.4 SUMMARY: PAPERS PUBLISHED AND IN PRESS

A total of twelve (12) papers have either been already published (as detailed in sections 1.2 no. I and
1.3 nos. 1-6) or are currently in press (as in section 1.3 nos. 7,8 and in section 1.2 nos. 2,3 and 4), or have
been submitted for publication (section 1.2 no. 3) during the two years (7/1/89 - 6/30/91) of the current
AFOSR Grant. Reprints of all of the above papers will be sent to AFOSR.

In addition, two Ph.D. thesis :

1. Termolecular Ion-Atom Association of Rare Gase Ions in Rare Gases by M. S. Keenan
(Ph.D. awarded 3/17/90)

and,

2. A Semiclassical Treatment of Laser Assisted Collisions in a Soft-Photon Weak Field
Regime by P. H. G. Smith (Ph.D. awarded 6/3/91)

have been accomplished due to AFOSR support. Copies of these theses will also be sent to AFOSJ'.
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2. PAPERS PRESENTED AT SCIENTIFIC MEETINGS (7/1/90 - 6/30/91)

1. 'Electron-Atom Collisions in a Laser Field', P. H. G. Smith and M. R. Flannery, Bull. Amer. Phys.
Soc. 36 No. 2 (1991) 188

2. 'Angular Momentum Changes in Collisional Ioniza.jon', A. Haffad and M. R. Flannery, Bull. Amer.
Phys. Soc. 36 No. 2 (1991) 188

The above two papers were presented at the 4 3 ,d Annual Gaseous Electronics Conference, 16-19 October,
1990, Champaign-Urbana, Illinois.

3. 'Functional Parallelism and Atomic Scattering Theory' E. 3. Mansky, to appear in the Proceedings
of the Fifth SIAM Conference on Parallel Processing for Scientific Computing (SIAM Press 1992), 25-27
March 1991, Houston Texas.

2.1 ABSTRACTS OF PAPERS PRESENTED

Abstract of Contributed Poster Paper presented at the Fifth SIAM
Conference on Parallel Processing for Scientific Computing

March 25-27, 1991, Houston , Texas

Functional Parallelism and Atomic Scattering Theory

The paralleizability of the numerical solution of systems of N cou-
pled first-order iinear partia! differential equations, which arise in the
solution of Schr6dinger's equation in electron-atom scattering, is in-
vestigated. In particular, an optimal strategy is outlined for paralleliz-
ing the solution of systems of coupled le-order PDE's by balancing
the competing demands of scheduling (ie. load balancing), granularity
and computational intensity of the algorithm. In this regard, the al-
gorithmic phase diagram of Hockney proves instrumental in choosing
which type of numerical technique (ie. rational extrapolation, Runge-
Kutta, predictor-corrector) is "best" depending on the number of cou-
pled equations N and global error tolerance chosen. Algorithmic phase
diagrams and Hockney numbers (7&1/2, s9/2,1A/2) will be preser-ted for
the solution of N coupled PDE's (N = 20 - 100) which arise in the
semi- classical multichannel eikonal theory of inelastic electron-atom
scattering. Work supported by AFOSR under grant no. AFOSR-89-
0426.

E. 3. Mansky

School of Physics

Georgia Institute of Technology

Atlanta, Georgia 30332-0430.
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Papers Presented at the 43rd Annual Gaseous Electronics Conference,

Urbana-Champaign, Illinois, 16-19 October, 1990

D-7 Electron-Atom Coilisions in a Lamer Field.* Philip.l{.G
Smith and M.R.Flannery, Georgia Institute r Technc.!. A semi-
classical Floquet approach is used to solve exactly, the Schrodinger equa-
tion for the laser/hydrogen interaction in a soft photon weak-field limit,
to give dressed states of the atom in the laser field. Perturbative dress-
ing is shown to provide an incomplete description, and cannot predict
the distinctive features of the Floquet approach. Electron-hydrogen
collisions in a laser field are then described via a multichanne eikonal
treatment, in which the dressed states are closely coupled. Cross sec-
tions for 1S-2S and 1S-2P0 excitations are presented as a function of
field strength and impact energy, and compared vith the Born-wave
result.

Research supported by AFOSR-89-0426.

D-8 Angular Momentum Changes in Collisional Ionization',
A. Haffad and M. R. Flannery, Georgia Institue of Technology -

Single and Double Differential cross sections for ionization in e - H(nl)
and H(is) - H(nl) collisions are reported as a function of impact energy
E, final energy e and angular momentum 1' of the ejected electron.
This process is assumed to occur via an energy-changing and
angular momentum-changing binary collision between the Rydberg
electron in state n1 and the projectile e or H(ls).
The atomic projectile can also be excited. Systematic trends in the
variation of the classical cross sections with final angular momentum '
are discussed and are in accord with a previous quantal treatment'.

"Research supported by U.S. Air Force Office of Scientific Reasearch
under Grant No. AFOSR.89-0426.
IM. R Flannery and K. McCann, Phys. Rev. 19 (1979) 2206.
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3. PERSONNEL INVOLVED

1. Professor M. R. Flannery - Principal Investigator

2. Di. E. 3. Mansky - Research Scientist II
3. Mr. P. H. G. Smith - Graduate Student (Ph.D. completed 6/3/91)

4. Mr. A. Haffad - Graduate Student (Ph.D. completed 8/16/91)

5. Mr. X. Qi - Graduate Student

4. SPECIAL HIGHLIGHT: LASER ASSISTED ELECTRON-ATOM COLLISIONS

A new theory of laser assisted electron-atom collisions has been formulated , developed and applied to,

e- + H(ls) + N'hw -. e- + H(2s, 2p0, 2p±1) + N'hw

The laser can perturb both the bound atomic electrons as well as the incident projectile electron. The first
effect is acknowledged by a semiclassical Floquet approach used to dress the excited states of hydrogen in
the laser field. This approach is compared to dressing by the traditional Perturbative approach which is then
shown to provide an imcomplete description of the laser interaction and which cannot predict the distinct
features provided by the Floquet approach.

The second effect of the laser interaction on the projectile electron is acknowledged via Volkov dressed states
for the projectile. These states are shown to exert significant influence on the cross sections for individual
state-to-state transitions which involve absorption or emission of a specified number of photons. They
however have only a negligible effect on the cross sections obtained by summing over all absorptions and
emissions.
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APPENDIX A

Electron-Atom Collisions in a Laser Field

P. H. G. Smith and M. R. Flannery
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Electron-atom collisions in a laser field

Philip H.G. Smith and M.R. Flannery
, '.. I,t Phi it v. O¢orica Institute ,/ Tehnob,qi. -it/antu. G4 !0332. ,430. L 5 4

Cross sections for the IS-2S and IS-2P., transitions in laser assisted e-H IS) collisions are calculated in both tile multichannel
eikonal and the Born-wa e treatments as a tunLtion of impact energy and laser field intensitv and phase. The laser considered i, a
monotonic. plane polanzed CO, laser i photon energy - 0.117 eV). %ith the polarization direction parallel to the initial projectile
%elocit, Floquet dressing of the h'drosei atom in the soft-photon %eak-field linut reveals a concise descnption of the laser assisted
electron-atom collision. This model also links the microscopic detail of the individual collisions with the macroscopic considerations
of experimental analysis.

1. lntroduction ientng state-to-state cross sections in this paper. calcu-

lated when neglecting the laser-projectile interaction.

The work reported in this paper is a study of the
influence of the laser field on electron-atom collisions
in the soft-photon weak-field regime. In this regime the 2. The laser-atom coupling
photon energy is a lot less than the energy required to
ionize the atom. and the field strengths can always be
considered as a perturbation to the field of the nucleus The starting atomic Hamiltonian is [4)
on the bound electrons. The effect of coupling a laser H.(r t) 'Pr + V (r) + Eo-r sin(wt + 8) (2)
field to a projectile electron in this regime during a

collision with an atom has been well explained in a - Ho + Vd,
number of studies (1]. The effect of a laser field on the where HO is the field-free atomic Hamiltonian and E, is
target atom, however, has met with a lot less success. the electric field strength -Aw/c expressed in terms of
This is due to the off-diagonal elements introduced into the laser frequency w. The phase shift is 8,, which is
the Schrcdinger equation for an atom in a laser field, exlased ineqe n 4 th pae his Hamiho iswhilch not only provide couplings between eigenstates of explained in section 4 of this paper. This 1-amltonian

%Nchnotonl prvidecoulins btwee eiensate of call be seen to be time dependent. By expanding intothe isolated atom, but simultaneously involve the ab- cabeentoetiedpdn.Byxadignosorption or emission of a photon. In this model the Floquet states and diagonalizing a restricted version of
soriona relements are dealt with by creating dressed the resultant infinite matrix [3.5], time independent
off-diagonal edressed states can be obtained that exactly solve eq. (2).
atomic states for the atom in the laser field by aatomc sate fo theato inthelase fild y a The time dependence has been removed by allowing for
semiclassical Floquet approach [2]. These dressed states Thetie dnde n ha s bn rm ey o forare then used to solve the electron-hydrogen collision absorption and emission of photons of energy. so that

the new dressed atomic states can be used to solve
e-- (IS) + .Vhw e- + H(2S. 2P o . 2P_ I ) + Nhw. collisional problems in a time independent manner di-

(1) rectly analogous to field-free atomic states. The cost of
removing the time dependence is an infinite set of

This model can include the laser-projectile interac- atomiuL states and energy levels
tlion by using the well-known Volkov states. As is shown
in ref. 131, the Volkov states for the range of impact E,, - i + nhw. (3a)
energies considered in ths work - 50 eV. 100 eV and
200 eV - provide a wide range of high order multipho- I = E 2.4an I '. n + m). (3b)

ton transitions."But as is also shown in ref. [3]. when the a 01

state-to-state cross sections are summed over an increas- where E. is a summation over field-free atomic .,rate:;
ingly wider range of projectile energies. the full treat- 0.. and E. is a summation over their Floquet expan-
ment which includes Volkov dressing is found to con- sion. It is emphasized that n vanes across the range
verge on the treatment that neglects the laser-projectile - -o to wo, and so provides an infinite set of periodic
interaction. This finding has been used to justify pre- dressed states.

0168-583X/91/S03.50 C 1991 - Elsevier Science Publishers B V (North-Holland)
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3. e -+ H(IS) +Vh w collision possihle to %,rite the *meastured" tranition amplitude
in terms of the -dre%sed- transition amplitude

Now that dressed atomic states ha'e been attained. T. r r ' f.:o T..,C~pcinh?6)
(hey are used to iol~e the time dependent laser per-
turbed collisional Hamiultonian

H = [P- + H, (r. t) -- V( R. r) The measured** trans.ition amplitude can he Jiided
into two distinct part% (1) ( e. 4I.!U hi or F I.,. de-

C ',Lrihes the collisional transition bet-~een dre%Ned 'tates
J ., exP(ns (4) of the atom: (2) ( 4. hwa or the projecuon o, 1..

describes the laser-atom interaction hetore and after
in a time independent manner. The ,ummation over the collIisional e~ent (e. A. hc,) There v no analocoub
Bessel functions appears from the Vokov dressing of laser- projectile interaction (e. /hw) in this model Both
the projectile electron. As mentioned earlier. th~s has these parts allow for absorption and emission of pho-
been well explained by others and so will not he dealt tons through interactions \Aith the laser field. This model
with in detail in this paper. Any~ experiment detects the can he ieen to give a very concise description of the
products of the collision outside the region of the laser laser assisted electron-atom collision. %%ih all three
field where K., d = H,). To obtain results comparable interactions (e. .4. hw). (A. hw) and (e. hw) as
with experimental observations this model calculates described recently [6]. included exactls.
the state-to-state cross sections from the "measured"
transition amplitude T.0 taken with respect to the
field-free atomiuc states. Eq. (4) provides a solution to 4. The dipole approximation
the "dressed" transition amplitude T,, taken with re-
spect to the Floquet dressed atomic states. By projecting This model is based upon a t\ypical crossed beam
the dressed states IT, on to the field free states opit is experiment, where a projectile electron beam. a target

SA; IS-2S BORN CROSS SECTIONS OB' 1S-2130 BORN CROSS SECTIONS
C FOR 6w SET TOFO6wSTO

0=0 a = 22.5. +=45, 0 = 0.a =22.5.+ =45.
x = 67.5 AND 0 =90 DEGREES x= 67.5 AND o =90 DEGREES

Cn

0 0
r.1

2000v

0.0 4.0 8.0o 12.0 1;.0 20.0 0.0 4.0 80 1 0 1; 0 20 0
ELECTRIC FIELD STRENGTH (au) 010O" ELECTRIC FIELD STRENGTH (au) 0i0-'

Fig. 1. Cross section vs laser field strength. for third order Floquet dressed hy~drogen atoms, in laser assisted e- + H( S) colhswins.,
using a Born-wave treatment. (a) IS-2S and (b) IS-2P0 cross sections Cross sections are compared over a range of pha%e% and

impact energies.
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IS-2S EIKONAL CROSS SECTIONSIS20EOALC SSETON
FOR 6ci SET TO 1 FOR 6w SET TO
, =0,--= 22.5, -=45, 0 o ,= 22.5.~ t5
x= 67.5 AND =90 DEGREES =6.5 AND -~ 90 DEGREES

0n

Cq V

A 0v2m m mSIIu mm m m

0. .. i0 1. 00 0.0 4 0 i.0 i2.0 16.0 20.0
ELECRICFIEL STENGH (a) 00"'ELECTRIC FIELD STRENGTH (au) 010'

Fig. 2. Cross section %s laser field strength. for third order Floquet dressed hydrogen atoms. in laser assisted e -- HOtS) collisions,
using a multichannel Eikonal treatment. (a) lS-2S and (b) IS-2R, crass sections. Cross sections are compared over a range of phase

and impact energies.

eA; BORN CROSS SECTIONS B; EIKONAL CROSS SECTIONS
AVERAGED OVER 6w. AVERAGED OVER 6&j0 = S-2S AND a IS-2P0 0 =IS-2S AND a IS-2P0

In 09

x

VZf 
.

'22 

V

46000V

10e 00

0.0 4 0 8.0 12.0 16.0 20.0 10.0 4.0 6.0 12 0 16 0 20 0
Fig. 3 IS2 n SZOcosscin slsrfedsrnt.frthird order Flocluet dressed hydrogen atoms, in laser assistede -+ H(IS) colhisions. using (a) Born-wave and (b) multichannel Etkorial treatments. The cross sections are averaged over 8, in the

range 00" to 90 0 and compared over a range of impact energies.



P.H.G Smith. M.R. Flannerv / Electron-atom collisions in a laser field

atomic beam and a laser beam all cross It one point in basis set used in the multichannel eikonal approxima-
space. with the %ector potential for the laser field ex- tion. The axis of quantization is along the direction of
pressed as incidence of the projectile electron, and is also taken is
.4 =- A o cos(kr-t-wt+J. (6) the direction of polarization of the laser field.

Fig. I shows the IS-2S and IS-2P., cross sections
At the atomic level, a dipole approximation can be used calculated by the Born-wa%,e treatment for a range of ,S
in all calculations so that eq. (6) can be reduced to from 0' to 900 The same set of curve, is repeated oer
.4 = ..4,1 cos( at + 8 ) (7) the next 2700 Hence the predicted experimental Lrro%,

section need be averaged only o er the reduLed rangeHow~ever, at the macroscopic level, the dipole approxi- 8 00 to_

mation does not hold across the full width of either the = to 90 Fig. 2 shows the same IS-2S and

projectile or the atomic beams. This can be dealt with IS-2P state-to-state cross sections calculated b% the

by varying the phase factor S. in A. The wavelength for Eikonal treatment. As can be seen. the tMo treatments
the electromagnetic radiation considered in this work is give very similar results. Fig. 3 shows the a.eraged
ofthe e ordtroa 1et rad .atHonce n y xper ment s w il s IS-2S and IS-2P cross sections. I) calculated in the

Born-wave approximation. and (b) calculated in the
observe a range of collisions over many wavelengths multichannel eikonal approximation.
and time periods of the laser. To predict the experimen-
tal cross sections it is thus necessary to take an average
over a range of 8,. from 00 to 360 °.

Acknowledgement
,:- -- (S.) d(8o). (8)

n 2This research is supported by AFOSR under Grant

no. AFOSR-89-0426.

5. Results
References

As explained in the introduction, the Volkov dress-
ing of the projectile states provides little additional [1l D V. Volkov, Z. Phys. 94 (1935) 250:
information to the summed state-to-state transitions. N M Kroll and K.M. Watson. Phys, Rev. %8 (1973) 804
Hence the results presented here neglect the laser-pro- S Geltman and A. Macquet. J. Phys. 822 (1989) L419
jectile interaction, and are still considered to be a good 121 J.H. Shirley. Phys. Rev. B138 (1965) 979:
approximation. All Floquet dressed states are taken to H. Sambe. Phys. Rev. A7 (1973) 2203;
third order in approximation. which allows for multi- S i. Chu. kdv. Atom. Mol. Phys. 21 (1985) 197
photon couplings of up to three photons in height. [31 Philip H.G. Smith and M.R. Flannery. in preparation
Third order is used since it is shown that convergence in [41 H.R. Reiss. Phys. Rev. Al (1970) 803.
the cross sections is reached by this time [5]. [51 Philip H G. Smith and MR. Flannery. in preparation

Numerical calculations of the dressed transition am- 161 W R. Newell. 16th Int. Conf. on the Physics of Electronicand Atumic Collisions. New York. Abstracts of in.ited
plitudes of eq. (5) are based on a Born-wave treatment papers 205. eds A. Dalgarno et al. (1990) p. 122.
and a multichannel Eikonal treatment [71. The restricted [71 M R. Flannery and K.J. McCann. J. Phys B7 (1975) L223.
basis set - IS. 2S. 2Po and 2P, 1 - is used in the 2518. L522:
dressing of the atomic states, which in turn provides the E.J Mansky and M R. Flannery. J. Ph~s. 823 (1990) 4549

I ATOMIC/MOLECL LAR PH' SICS



APPENDIX B

Electron-Hydrogen Collisions in a Laser Field

P. H. G. Smith and M. R. Flannery

21



ELECTRON-HYDROGEN COLLISIONS IN A LASER FIELD
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ABSTRACT: The non-perturbative Floquet method is used to provide the dressed states

of a hydrogen atom in a laser field in the soft-photon weak-field regime. These dressed

atomic states then provide a basis set expansion for use within a consistent semiclassical

Multichannel Eikonal Treatment of laser assisted e--H(1S) collisions. The variations with

field strength of the 1S-2S and 1S-2P 0 state-to-state cross sections are presented. Special

attention is employed in correlating the time frame of the laser field with the time frame

of the relative orbit of the collisional species, and this is shown to require the inclusion of

a phase shift b, within the vector potential of the laser field. This inclusion is important

when comparing with experimental results.

1.INTRODUCTION

The Floquet treatment has already been successfully employed (Chu 1985, Potvliege

and Shakeshaft 1991) in calculations of laser induced multiphoton ionizations, where it

provides dressed states for an atom in a laser field. That (perturbative) dressing of

target states can have important consequences in laser-assisted scattering was illustrated

by Byron and Joachain (1984). These dressed states are useful, not only for laser induced

phenomenon, but also as a collisional basis set for laser assisted collisions. In this role they
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are in fact very appealing, since the Floquet treatment naturally lends itself to a time-

independent analysis, and hence are compatible with present field free scattering theories.

Despite the apparent applicability of this approach, work along these lines has only just

recently appeared (Sharma and Mohan 1990, Smith and Flannery 1991a, Burke et al 1991).

Byron and Joachain (1984) have illustrated that perturbative dressing of the target states

can have important consequences in laser-assisted scattering. Floquet dressing however

provides a more complete description (Smith and Flannery 1991b).

This short paper provides an outline of the research (Smith 1991) being conducted

by the authors on e--H(1S) collisions, using a Floquet dressed basis set for a hydrogen

atom in a laser field. A short paper has previously been published (Smith and Flannery

1991a) but the range of the electric field strength, over which collisional cross sections

are calculated, has now been extended to provide greater insight into the role of the laser

field in the collision. A more detailed account is presently under preparation. The work

described here centers on the laser perturbation of the atom alone, and attempts to probe

its exclusive effect by neglecting the laser perturbation of the projectile electron. In a later

paper, the laser perturbation of the projectile will also be included via the use of Volkov

dressed states but these will be shown to have a negligible effect on the state-to-state cross

sections, within the range of electric field strengths studied in this work.

2.THEORY OF LASER ASSISTED COLLISIONS

The starting point of a discussion of laser assisted collisions is the laser perturbed

2



Schrodinger equation

-[P2 + + A/c) 2 + V(r) + V(R, r) ( + (1)

The channel coordinates, (PR,R), represent the momentum operator and the position

vector for the projectile. The internal coordinates, (p, r) represent the momentum operator

and the position vector for each bound electron. The electronic coordinates will be denoted

collectively by r, c is the speed of light, i is the projectile-target reduced mass, V(r) is the

internal potential for the bound atomic electrons and V(R, r) is the external projectile-

target interaction potential.

After the usual dipole approximation, the vector potential for a monochromatic plane

polarized laser of frequency w is

A = A, cos(,&d + 6,) (2)

It is customary, especially in multiphoton ionization, to omit the phase shift 6, and to just

write the vector potential in the form A, cos w or A. sin wL. However for semiclassical

collision theory there is already a time frame of reference imposed upon the collision,

namely the time along the relative trajectory of the collisional species. The time I = 0

is usually defined at the point of closest approach between the projectile and the target,

ie the orbit's passage through the periapsis. Thus, if the vector potential were used in

the form A, cos wi, it would indicate for each e-atom collision that the laser field was at

a maxima of its cycle at the point of closest approach, as indicated by the dotted curve

in the diagram of Fig.1. This is in general not true, so that it is necessary to adopt the

phase shift b,, in order to synchronize the time-zero of the laser field with the time-zero of
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the collisional e-atom orbit. The vector potential of eq.(2), used in these calculations, is

therefore shifted in phase by b,, from A, cos Ai, as shown by the solid line in the diagram

of Fig.1. The phase shift b,, varies between 0 and 27r. Bachau and Shakeshaft (1984) have

explicitly acknowledged the effect of the phase shift for excitation in H + -H(ls) scattering

in a nearly resonant laser field.

On omitting the projectile dependent terms from the laser perturbed Schr~dinger

equation eq.(1), the time-independent Floquet prescription (Shirley 1965, Sambe 1973,

Chu 1985) yields the matrix equation.

(E + nhW)6,p6,n=, + A+n=,- - bna =,n+l A"' = QqAm (3)

The field free atomic energy levels fa and the laser induced off-diagonal couplings

Yo = -i (00€c,, - r0,), between field free atomic states, are known so that the matrix

can be diagonalized to obtain the new dressed basis set. This invclvcs determining the

"Quasi" energies Qq and the dressed atomic states

V = A 0 .o ) In) (4)

which are written in terms of the above combination of field free atomic states 10,) and

periodic states In) = em""'. These new dressed atomic states form an orthogonal, time-

independent basis set, which provides a medium in which any time-independent field free

scattering theory may be applied to laser assisted collisions. However the price paid for this

formal simplification is the introduction of an infinite set of periodic solutions, demanded

by the Floquet prescription.

Using the Lippman S,:hwinger equation, it is relatively straightforward (Smith 1991)
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to obtain the "dressed" transition amplitude

Tpq = (0pJV(R,r)Ieq) exp(i(ki- kf) . R) b(Qp + -k' + (n-m)hw - Qq - k (5)

taken with respect to the dressed atomic states V/q. This "dressed" transition amplitude

describes collisional transitions between the dressed atomic states, and includes all of

the possible photon absorptions and emissions that can occur during such transitions.

However the "dressed" transition amplitude, eq.(5), pertains to the wrong physical basis

set for comparison with field free collisions and experimental results. Rather a transition

amplitude taken with respect to the field free atomic states, 0a, is required. Since the set of

dressed atomic states, obtained via the Floquet prescription, is assumed to be a complete

and normalized set it is possible to form the projection operator Zq JIq)(1'q - 1. On

using this projection operator, the "measured" transition amplitude

T = (= IV(R,r)!4 ) = E (0,,O01V'p) Tpq (V/q 10.,0) (6)
q q

taken with respect to the field free atomic states, may be written in terms of the "dressed"

transition amplitude Tpq, taken with respect to the dressed atomic states, Writing the

"measured" transition amplitude, Toa, in terms of the "dressed" transition amplitude, Tp9,

in this manner effectively allows for a transition between the dressed and the field free basis

sets. Hence semiclassical scattering theories can be applied in a time-independent manner

and the calculated transition amplitudes then transformed to the field free "measured"

basis set in order to yield the state-to-state transition cross sections. It can be shown

that the calculated cross sections allow for laser photon absorption and emission and also

Raman photon emission (Smith and Flannery 1991b). Both the probability amplitudes
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and the photon absorption and emission locations during the collisional sequence of events

are tracked by eq.(6).

Since the vector potential (2) can only be defined to within a phase shift 6, as in

Fig.1, it is therefore necessary to take the following average

O'experiment = (7)

by a over the range of b,, from 0' to 3600. This proves to be an important consideration.

RESULTS: e- + H(1S) + Nhw e- + H(2S,2Po) + Mhw

State-to-state cross sections for the 1S-2S and 1S-2P 0 transitions, in laser assisted

e--H(1S) collisions, are calculated by the Multichannel Eikonal Treatment ,s a function

of impact energy and laser field intensity. All cross sections reflect a summation over

the state-to-state cross sections, for all possible final projectile energies, consistent with a

specified initial relative energy. Changes in the final projectile energy arise from photon

absorption and emission. The laser considered is a monotonic, plane polarized CO 2 laser

(hw = 0.117eV), with the polarization direction parallel to the initial projectile velocity.

The restricted basis set - 1S, 2S, 2P 0 and 2P±1 - is used in dressing the states, which

in turn provide the basis set used within the Multichannel Eikonal Treatment. The axis

of quantization is along the direction of incidence of the projectile electron and is also

taken as the direction of polarization of the laser field. Convergence in the cross sections is

reached (Smith and Flannery 1991b) by a third order approximation to the dressed atomic

states and justifies the use of a third order approximation here.

Cross sections versus field strength for 1S-2S and 1S-2P transitions are presented in
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Fig.2, (a) and (b) respectively, for Floquet dressed hydrogen atoms. These cross sections

are compared over a range of phase shifts from b,, = 0" to 90', since cross sections for

b;, between 900 and 360' are found to be a repeat of the curves shown. It can be seen

that the cross sections exhibit a very dramatic phase dependence over the field strength

shown. The k,, = 00 curve exhibits two stationary points, while the b" = 900 curve

exhibits only one stationary point. A model purporting predictions of experimental results

must take, as explained earlier, an average of the cross sections over the range of phases

from &, = 00 to 3600, or the reduced range of b,, = 0' to 90° . Cross sections after such

averaging are presented in Fig.3a where it is immediately apparent that the 1S-2S cross

section never crosses the 1S-2P 0 cross section. This non-crossing is very striking when

compared to the percentage 2P 0 component of the dressed state S (dressed 2S state) and

thc dressed state P (dressed 2P 0 state) presented in Fig.3b. It is evident that the dressed

2S state is gaining an increasingly 2P 0 character as the electric field strength increases,

thereby raising the 1S-2S cross section at the expense of the 1S-2P0 cross section. But

because of the infinite set of periodic Floquet states the 1S to dressed 2S cross section is

increasingly contributing to the "measured" 1S-2P 0 cross section, and hence prevents the

"measured" 1S-2S cross section from exceeding the "measured" 1S-2P 0 cross section. The

reasons behind this phenomenon are explained in greater depth in a later paper (Smith

and Flannery 1991b).

4.CONCLUSION

The Floquet prescription used to obtain the dressed collisional basis set, has been

found to yield a very concise description of the role of a laser field in collisional processes.
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The overall semiclassical approach is consistent in that both the laser and the electron

perturbations are described semiclassically. This des,ription includes both the probability

amplitudes and locations of photon absorption and emission during the collisional sequence

of events, and are summarized by the descriptions (A,hw) and (e,A,hw) as given by Newell

(1990).

This work has demonstrated the significant dependence, of the collisional cross

sections, on the phase shift b, included within the vector potential for the laser field.

This phase has been found necessary to synchronize the time-zero of the laser field with

the time-zero of the collisional orbit. It is suggested that any theoretical model which

attempts to predict experimental results, must take an average of the phase dependent

cross sections over a range of phases from 6, = 0' to 3600. With this averaging it is

shown, in Fig.3a, that the 1S-2S cross section rises up to, but does not exceed, the 1S-2P 0

cross section in laser assisted e--H(1S) collisions. This feature should be experimentally

observable with present day technologies.
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FIGURE CAPTIONS

Figure (1): Vector potentials A, cos(wt + b,) and ........ A, cos w, for a

monotonic plane polarized laser field of frequency w, are shown positioned in time relative

to the orbit's pericenter at time t = 0.

Figure (2): Cross sections vs field strength for 1S-2S and 1S-2P0 transitions, (a) and

(b) respectively, in laser assisted e--H(1S) collisions using third order Floquet dressed

hydrogen atoms and a Multichannel Eikonal Treatment. The cross sections are presented

over a range of phase shifts b - =0 ° - - - - - =22.5 ......... =45' , .

=67.5' and =900, at a photon energy of hw = 0.0043au.

Figure (3). Cross sections in e--H(1S) collisions are compared against the percentage 2P0

component of the dressed atomic states, (a) Pnd (b) respectively, over a range of electric

field strengths for third order Floquet dressed hydrogen atoms in a laser field. The cross

sections ( 1S-2S and ----- 1S-2P 0 ) are an average of the phase dependent

cross sections over a range of phases from 6, = 00 to 900, using a Muitichannel Eikonal

Treatment. For the percentage 2P0 component, represents the dressed state S

and represents the dressed state P.
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monotonic plane polarized !aser field of frequenc. -. are snown positioned in time relati.

to the orbit's pericenter at time I = 0
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Abstract: Cross sections for the 1S-2S and 1S-2P 0 transitions in laser assisted e--H(1S)

collisions are calculated in both the Multichannel Eikonal Treatment and the Born-Wave

approximation, as a function of impact energy and laser field intensity. The laser considered

is a monotonic, plane polarized C0 2 laser (photon energy = 0.117eV) with the polarization

direction parallel to the initial projectile velocity. The first part of this paper confines the

laser perturbation to the bound electrons of the atom, A semiclassical Floquet approach

is used to dress the hydrogen atom in this soft-photon weak-field regime, and is shown

to reveal a concise description of the laser assisted collision. The Floquet dressing is

compared to dressing by the traditional time-dependent perturbation theory, showing that

the Perturbative approach gives an incomplete description of the laser interaction, and

cannot predict the distinct features provided by the Floquet approach. The second part

of this paper extends the laser perturbation to the projectile electron, and the familiar

Volkov dressed states are used. Although, in the range of impact energies and electric

field strengths considered, the Volkov dressed states exert significant influence on the cross

sections for individual state-to-state transitions, which involve absorption or emission of

a given number of photons, they have only a negligible effect on the cross sections when
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summed over all absorptions and emissions.

Special attention is employed in synchronizing the time frame of the laser field with

the time frame of the trajectory of the collisional species orbit. This requires the inclusion

of a phase shift b, within the vector potential of the laser field. This inclusion is important

when comparing theoretical cross sections with cross section measurements.



1.INTRODUCTION

The work reported in this paper studies the influence of the laser field on projectile-

atom collisions, in the soft-photon weak-field regime. In this regime the photon energy

is much less than the energy difference between sub-levels of the atom, and the electric

field strength of the laser can always be considered as a perturbation to the electrostatic

interactions between the nucleus and the bound atomic electrons. The effect of coupling

a laser field to a projectile electron, in this regime, during a collision with an atom

has been well explained (Volkov 1935, Kroll and Watson 1973, Geltman and Macquet

1989) via the introduction of Volkov states. Byron and Joachain (1984) have illustrated

that perturbative dressing of the target states can have important consequences in laser-

assisted scatteriig. The effect of a laser field on the target atom however involves off-

diagonal elements introduced into the Schr6dinger equation of the target atom by the

laser field, which not only provide couplings between eigen states of the isolated atom, but

simultaneously involve the absorption or emission of a photon, which in turn demands the

use of a non-perturbative approach. Little work has been done on this aspect although

some has recently emerged (Smith and Flannery 1991, Burke et al 1991).

This work mainly centers on the laser perturbation of the atom, and initially attempts

to probe its exclusive effect by neglecting the laser perturbation of the projectile. Before

the laser perturbed atomic Schr6dinger equation can be used to calculate cross sections in a

laser field, it is essential to remove the time-dependence and to re-instate the orthogonality

of the atomic states. This is achieved using a semiclassical Foquet approach (Shirley 1965,

Sambe 1973, Chu 1985) which exactly solves the laser perturbed Schr~dinger equation
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to produce a new set of orthogonal dressed atomic states, which can then be treated

in a time-independent manner. Once these new states have been determined, they can

be used within any time-independent scattering theory in a manner directly analogous

to field free collisions. In this work cross sections will be presented in the Born-Wave

approximation and the Multichannel Eikonal Treatment (Flannery and McCann 1975,

Mansky and Flannery 1990) and are compared over a range of impact energies and

electric field strengths. It will be shown that both the Born-Wave approximation and

the Multichannel Eikonal Treatment produce cross sections that exhibit the same essential

dependence on the electric field strength. As a comparison with the Floquet approach,

cross sections will also be determined via the more traditional time-dependent Perturbation

theory (Bayfield 1979). The Floquet and the Perturbative cross sections are strikingly

different, and it is claimed that this difference originates from an important omission in

the description of the dressed atomic states by the Perturbative approach. Floquet dressing

will be shown to provide a more complete description.

Having obtained state-to-state cross sections which neglect the laser perturbation of

the projectile, this perturbation will then be included within the collisional Schr6dinger

equation in the form of Volkov dressed states (Volkov 1935, Kroll and Watson 1973,

Geltman and Macquet 1989). For a single state-to-state transition, with a specific final

projectile energy, the Volkov dressed states exercise a very significant effect on the cross

sections. When the state-to-state cross sections are summed over all possible final projectile

energies reached through absorption and emission of photons, this work however shows that

the cross sections that include the laser perturbation of the projectile, are only marginally
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different from the cross sections that have neglected the perturbation of the projectile.

In order to synchronize the time frame of the relative orbit of the collisional species

with the time frame of the laser field, a phase shift 6, must be introduced into the vector

potential A of the laser field. Apart from Smith and Flannery (1991) this phase shift

has been ignored in all the above work, and has important effects. Bachau and Shakeshaft

(1984) have explicitly acknowledged the phase shift for 2p excitation in H + -H(ls) inelastic

scattering in a nearly resonant field.

This paper has also been able to describe in greater detail the role played by the

Floquet states, so as to give a very concise description of the interaction, in terms of

the probability amplitudes and the locations of photon absorption and emission during

the collisional sequence of events. In section 4 the photon absorptions and emission are

discussed in the form of (A,hw) and (e,A,hw), as recently described (Newell 1990).
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2.FLOQUET DRESSED STATES OF AN ATOM IN A LASER FIELD

This theoretical model is based on a typical crossed beam experiment, in which the

laser beam, projectile beam and atomic particle beam all cross at one point in space at

900 angles to each other. The collision will be considered in the center of mass frame of

reference, but it should be noted that the projectile will have a much greater velocity than

the target atom in the laboratory frame of reference. This is important since the atom will

be inside the laser-beam for the duration of the collision, and so must be excited from one

dressed atomic state to another.

When the laser perturbation of the projectile is neglected the Hamiltonian, in the

center of mass frame of reference, is given by

H = _ 2+ + A/c) 2 + V(r) + V(Rr)(1)

The channel coordinates, (PR, R), represent the momentum operator and the position

vector for the projectile. The internal coordinates, (Pr?,,r), represent the momentum

operator and the postion vector for each bound electron. The electronic coordinates are

denoted collectively by r, c is the speed of light, p is the projectile-target reduced mass,

V(r) is the internal potential for the bound atomic electrons and V(R, r) is the external

projectile-target interaction potential. Atomic units are used throughout.

The monochromatic laser, of frequency Lo and phase b,, should be exactly described

by the vector potential

A(w,r,,.1) = A, cos(k,.., + w + .) (2)

But at the atomic scale, since the reduced wavelength A. -L is much larger than atomic

6



dimensions, the dipole approximation is valid so that the vector potential reduces to

A = A, cos(wi + b,) (3)

In semiclassical scattering theories, the point of closest approach (the periapsis), between

the projectile and the target, is generally defined as occurring at time t=0. If the vector

potential, under the dipole approximation, was written as A = A. cos(wi), then this would

indicate that for each collision the electric field strength was at a maxima of its cycle at

the point of closest approach, as indicated by the dotted curve in Fig.1. Since this is not

in general true, it is necessary to use the vector potential given in eq.(3), where b,, is the

phase shift of the vector potential eq.(3), from A, cos(wi), at the point of closest approach

as indicated by the solid curve in Fig.1.

To dress the atomic states it is necessary to consider the effect of the laser field on

the isolated atomic target. This is done by removing the projectile components from the

Hamiltonian eq.(1). On applying the unitary transformation U = exp(i N, A.riic), (Reiss

1970), the Schr6dinger equation for an atom in a laser field is then expressed as

ih = (E pi- ilor( 6 c,(l+,~) -V(r))/ (4)

where E, is the electric field strength Aow/c, and where it has been assumed that the

periodicity is the only time-dependent part of the vector potential. The solution of eq.(4)

is the dressed atomic state V,' (at present unknown). On using the field free atomic

Hamlitonian Ho = , 1p2 V(r), and on setting , t laser perturbed

atomic Schr6dinger equation eq.(4) is written in the more compact form

H" Zh 1- ") = 0 (5)
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which is now suitable for application of the Floquet prescription (Shirley 1965, Sambe

1973, Chu 1985). Under this prescription, the solution to eq.(5) is of the form

IV') = I,') = C-Qt/h IGO (6)

where Qq is the energy or "quasi-energy" of the new dressed state, and G, has a periodic

time-dependence of period 11. Since G9 is periodic in time, it is expanded by the Fourier

series

IGq) G ! ,n) (7)

where the Floquet notation, introduced by Shirley (1965) is used. Thus

, = )I) with (tin) = einwt (8)

and In) will be called a "periodic" state for clarity later. Using this Fourier expansion, the

Schr6dinger equation eq.(5) can now be rewritten so as to explicitly include the periodic

photon dependence nhw as

+ 1hw + P±(iw, - ciwt))eQ/hGq,n Q= q- (9)

In this weak-field regime the dressed atomic states can be approximated by a combination

of field free atomic states, as

I Aa';) - Aq. iq, n) (10)
n

where the periodic time-dependence of the coefficients has been separated by using the

periodic states ;n ) On comparing this with the Floquet dressed atomic states

,v = (-Q / h " ... ,,d (11)
n
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then the laser perturbed Schr6dinger equation eq.(9) can be written in the matrix

representation as

S~~~~ [(b+nW6an .~n~ 3 -/tc~n=m+i] An = QqAm (12)

n

The field free atomic energy levels c and the laser induced off-diagonal elements d:=

-¢ are known, so that the matrix defined by eq.(12) can be diagonalized

to obtain the quasi energies Qq and the dressed atomic states V,,. Because the Floquet

prescription allows for an infinite set of periodic states, from n = -oo to oc, it is necessary

to truncate the matrix. But as long as the off-diagonal couplings y ± are small, this

truncation can be quite severe whilst still allowing convergent dressed states to be obtained.

Fig.2 shows a specific example of a Floquet matrix for a hydrogen atom in a laser field.

Significant couplings only occur between field free atomic states qo and 0,' if the energy

level separation is of the order of, or less than, the photon energy of the laser

ifa - l < hw (13)

For a collisional problem that considers excitation from the n=1 to the n=2 sub-levels,

internal couplings within the n=2 manifold need only be considered at the photon energies

used within this work.

To a first order approximation, which allows only single photon coupling, the matrix

of Fig.2 yields the dressed atomic states

IS) = A!2S, n, + BfC"- 2Po,n + 1) + Be- "- 12Po,n-1) (14a)

jP) = A!2Po,n) + Bc'"-12S, n+1) + Be-I 12S, n-1) (14b)
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It is emphasized for these dressed atomic states, that n varies across the range from

n = -oo to oo, giving rise to an infinite set of periodic Floquet states. In higher order

approximations to the dressed states, multiphoton couplings are included, so that eq.(14

a, b) include further terms for n±2, n±3 etc. Results of section 5 shows that convergence

is achieved by a third order approximation, so that terms up to n±3 provide an adequate

description of the dressed atomic states, over the electric field strength range considered

in this work.

From the form of eq.(14 a, b), it can be seen that the fractional 2S and 2P0 components

of both dressed states S and P change with varying electric field strength. The character

of the dressed states S and P will then change with increasing 6o. This changing character

of the dressed states is clearly seen from the radial distribution functions, where the radial

distribution functions Ds(r) and Dp(r) are defined by the equations

(SIS) = j Ds(r)drj dcos Odo (15a)

(PIP) = J Dp(r)dri dcos Odo (15b)

The radial distribution functions, for the dressed states S and P, are shown in Fig.3a

- Fig.3c as the electric field strength e, increases from 0 au to 3 x 10- 3 au. These

radial distribution functions correspond to third order F-.oquet dressed hydrogen atoms.

Convergence in the state-to-state cross sections of section 5, for third order Floquet dressed

atomic states, is used to justify a third order approximation here. It is seen that as the field

strength increases, the radial distribution function Ds(r) loses its intrinsic 2S character,

while gaining an increasingly 2P0 character. In a similar fashion the radial distribution

function Dp(r) is losing its intrinsic 2P0 character, while gaining an increasingly 2S

10



character. The plot in Fig.4 attempts to represent this, by looking at the percentage

component of the 2P0 field free radial distribution function, D2Po(r), in both Ds(r) and

Dp(r). This shows very clearly the play off between the dressed states S and P indicated

in the set of plots in Fig.3. As the electric field strength rises, both states S and P

simultaneously give up some of their intrinsic zero field character, and assume more of

each other's intrinsic zero field character. This character swapping continues past the

point, where the dressed state S has more of a 2P 0 character than the dressed state P.

If the statement is made, for the collisional energies studied in this work, that the field

free 1S-2P 0 state-to-state integral cross section is always larger than the field free 1S-2S

state-to-state integral cross section, ie if

als,2Po > alS,2S (16)

then from the plot of Fig.4 it might be reasonable to expect, as the electric field strength

rises, that the laser assisted 1S-2S state-to-state cross section will rise, and the laser assisted

1S-2P 0 state-to-state cross section will fall. This rise and fall can also be expected to

continue past the point where the laser assisted 1S-2S state-to-state cross section is greater

than the laser assisted 1S-2P 0 state-to-state cross section.
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3.TIME-INDEPENDENT SCATTERING CROSS SECTIONS

In section 2 the time-dependent Schr6dinger equation for an atom in a laser field,

was solved using the Floquet prescription to obtain new eigenstates, or dressed states

for the atom in a time-independent form. The time-dependence has been removed by

allowing for absorption and emission of photons. These dressed states can now be used

to solve collisional problems in a manner directly analogous to field free collisions. In

this work the scattering cross sections for the laser assisted collisions are derived from

the Lippman Schwinger equation (Bransden 1970). This approach is valid to all orders

of approximation of the dressed states, given the necessary assumption that the dressed

states form a complete and normalized set. From section 2 the laser assisted collision can

be described by the Hamiltonian

H +2 [ - r iwt)] + ' (r) + V(R, r)

(17)

= HF + V(R, r)

When the interaction potential V(R, r) is removed, the remainder lP describes the

projectile far removed from the target atom, which remains in the presence of the laser

field. The solution , of the Schr6dinger equation

2(18)

is the combination 4q = ' exp(ikq .'R) of the dressed atomic states 0,' of section 2, with

a field-free projectile plane wave., The scattered collisional wave function in the presence

of V then satisfies

+ -' 1q) - lim 1E (19)

C-0 Eq ic- Ho
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The probability of a transition between the scattered collisional wave functions T+ and

IFP is given by the S-matrix

Spq(t) = (-;lk + ) (20)

On inserting the scattered collisional wavefunction eq.(19) into the S-matrix eq.(20), and

expanding the dressed atomic states V' into the combination of field free atomic states 0

of eq.(10), the S-matrix is then

Spq(t) = (tpl'tq)bpq

± A(.pe(Qp+-k2 imhw)t/h
+ A-40e 2p

SQ+-k - nh + ic - Qp - -Lk2 + Mrht

× e-i(Q +2k2-nhw+ict/h VI+) (21)

Under the following definition

exp[i(Qp + - Qq _ k, + (nm)hwic)/]lim 2pf2
Qq + -- k,  nhw + if - Q - -k 2 + mhw

Q 2,u nh~iQ 21, f (22)

= 2r ib(Qp + ±k2 + (n--rn)hw - Qq - -k2)

of the Dirac 6-function, eq.(21) becomes

Spq(t) = (Tpl' q)bpq + i27T Tpq 6(Qp + -Lk 2 + (n - m)hwe - Qq - k ) (23)

Using terminology directly analogous to field free collisions, the S-matrix eq.(23) has been

written in terms of the transition amplitude

Tpq A A ( V 1 %P+) = (",, I(4Vj'qI exp(i(k, - kf) R) (24)
n a M )3
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and includes all of the possible photon absorptions and emissions that can occur during

collisonal transitions between the dresses states. For a field free collision, kq and kP would

be defined as the wave numbers for the projectile, associated with the initial atomic state

V' and the final atomic state V',, and the difference between kq and kp depends on the

difference

Qq -Qp = -Lkp 2 _-1k2 (25)

between the energy levels of V,"' and VP,. The initial asymptotic wave number for a laser

assisted collision is still q since the projectile has not yet interacted with the atom,

but the final wave number kf differs from kp so as to satisfy the conservation of energy

requirement

I k- Qq + '-k2 _ QP - (n-m)hw (26)

Since kp is defined by eq.(25), kf can be defined by

= _ (2 )
Lk 2 -k2 (n-rn)hw (27)

This shows that kf can differ from kp by the photon energy (n-n)hw, which corresponds

to the number of photons absorbed or emitted in the state-to-state transition.

The S-matrix obtained in this treatment describes scattering within the dressed basis

set. The associated scattering amplitudes which can be derived from various theoretical

techniques, only describe transitions between dressed states that are part of the new

basis set. To obtain results that can be directly compared with field free collisions and

experimental results, it is necessary to calculate the laser assisted scattering cross sections

with respect to the field free basis set. From Bransden (1970) the cross section for a
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transition from the field free atomic state 0,, to field free atomic state Op is

6= ki(21r) 3  da dkf k} 1E (28)

where W, is the transition rate. For any given scattering angle and state-to-state

transition, there can be more than one wave number for the projectile, corresponding

to absorption and emission of energy from the laser field. This means that the transition

rate is defined as

-rP2 IT,6.1 2 b(O + 2  1 k 2 + 6E) (29)

k,

where it is written in terms of the transition amplitude Tpq, and includes the unknown

energy change 6E due to the influence of the laser. In eq.(29) the final wave number kf

must be written in terms of the wave number kp, associated with the atomic state 00 in

a field free collision. Using the definition of k,6

k= + 2 - " 30)

in the delta function of eq.(29), the resulting equation

k2 - 'k 2 -bE (31)

relating kf to k3 is very similar to eq.(27), and includes the unknown energy change bE. It

is now possible to insert the transition rate eq.(29) into the integral cross section eq.(28).

Using kf Idkf = d(lk2) so that the integration over kf can be evaluated, the integral cross

section becomes

I= k,(2,r) dfl E kf 2irp 2 IT,6a 2 b(-Lk2 - k 2 --i- bE) (32)
k,
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which is equivalent to the standard integral cross section in the field free basis set, except

that allowance has been made for the absorption or emission of an unknown amount of

energy tE from the laser field during the collision. The set of dressed atomic states obtained

in section 2 are assumed to be a complete and normalized set so that I jy€)(¢q = 1. On

using this projection operator the "measured" transition amplitude, taken with respect to

the field free basis set, is written in terms of the "dressed" transition amplitude, taken

with respect to the dressed basis set as

To. = (+,3IlI4,) = Z Z (Co,01,b) TPq (Vkq10kcO) (33)
p q

The "dressed" transition amplitude Tpq of eq.(24) has been determined by the Lippman

Schwinger equation, and according to eq.(26), kf must satisfy the conservation of energy

requirement

Qp+Lk q q-_ k + nh=0 (34)

where n has replaced n7 - n. As demonstrated in eq.(33) the "measured" transition

amplitude, Tp, can be obtained from the "dressed" transition amplitude, Tpq, and kf

must satisfy the second conservation of energy requirement

Co, kf a - -Lk +E =O0 (35)2p a

obtained from eq.(30). The final wave number, kf, of the scattered projectile must be

identical for both equation eq.(34) and eq.(35). This provides an opportunity to determine

the total energy absorbed or provided by the laser field. It may be a natural assumption

that this energy SE is an integer number of laser photon energies nhV. But on diagonalizing

the Floquet matrix to obtain the dressed wave function, it can be seen for some transitions
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to occur, that the energy change bE cannot be an integer number of laser photon energies.

In molecular spectroscopy an analogous situation occurs, where a molecule is excited to

a higher energy level by a laser photon, which has more energy than is required for the

transition (Weissbluth 1989). In the Raman effect, the molecule absorbs the laser photon

and then emits a new Raman photon to remove the excess energy. This is the process that

is assumed to be occuring whenever necessary, with no additional restrictions applied to

the transition because it must proceed via the Raman effect. A discussion of this effect is

given in section 4, and is shown to play a significant role in the laser dependent changes

in the integral cross sections.

Since the vector potential eq.(2) can only be defined to within a phase shift &,, as in

Fig.1, it is therefore necessary to take the following average

Cexperiment =(S) d(,,) (36)

of a over the range of b, from 00 to 3600.
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4.THE ROLE OF THE FLOQUET DRESSED STATES

In discussing the use of Floquet theory in laser assisted collisions, reference will be

made to a reduced Floquet system of a hydrogen atom in a laser field. An abbreviated

energy level diagram is shown in Fig.5; The states shown are only a limited number of

the infinite set of periodic Floquet states. In a first order approximation which allows for

single photon coupling only, the system is adequately described by the following 7 states

selected in the diagram of Fig.5,

i) = 1s,O) (37a)

12) AI2S,-1) + Be" 12PoO) + Be-' 12.Po,-2) (37b)

14) = AI2S, 0) + Bd6'- 12P 0 ,+l) + Be-i6,12Po,-1) (37c)

16) = A128,+I)+ B CB6 12P 0 ,+2) + B e- "- 12P 0 .0) (37d)

13) = AI2Po,-1) + Be"- 12S,0) + BC-"- 12S,-2) (37e)

15) = A12Po,0) + Be 6 - 12S,+l) + B C-'i 12S,-1) (37f)

17) = A12P,+1) + Be 6 - 12S,+2) + Be'- 12S, O) (37g)

For illustration purposes a first order approximation has been used here in the atomic

dressing to reduce the number of possible transitions available; but all that is said here is

valid to any order of approximation

For the purposes of numerical calculations, the energy levels 2S and 2P0 can be

considered to be degenerate, though it must be kept in mind that this is not s.o. Even if

the field free energy levels were degenerate, this degeneracy would be broken when in the

influence of the laser field due to coupling between the 1S and 2P0 states.
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Consider the laser perturbed Schr~dinger equation eq.(4)

h = 14 - i .c + V(r) (38)
di2 r? 2 ie~~u)6)]-7 /

The laser induced perturbation 41,o .ri, provides a dipole coupling between previously

orthogonal field free atomic states, a coupling that contains a time-dependence eiwt

Because of this time-dependent coupling, the field free states are no longer eigenfunctions

of the Schr6dinger equation, and the Schr6dinger equation is then no longer time-

independent. In section 2 it was shown that the Floquet n,'-scription results in a new

orthogonal basis set, composed of dressed atomic states whi -n be treated in a time-

independent manner. These three properties (orthogonality, eigen functions and time-

independence) of the Floquet dressed atomic states, allow traditional, field free, time-

independent scattering theories to be applied to laser assisted collisions. However the

price to be paid for these three properties is the introduction of the infinite set of periodic

solutions. The transition between the finite set of field free atomic states, and the infinite

set of dressed atomic states, is achieved by projection. This has been introduced in eq.(33)

of section 3, where the "measured" transition amplitude, taken with respect to the field free

basis set, is written in terms of the "dressed" transition amplitude, taken with respect to

the dressed basis set. Because the dressed atomic states have a periodic time-dependence

it is necessary, in order to achieve this projection, to write the field free atomic states as

a combination of field free atomic states and periodic states. In the expansion

iE) = Z A -c t i¢,?2) (39)
n

of the field free atomic state into a field free state and periodic state combination, A,, is

non-zero only when n = 0. Thus the field free atomic state 10o) is equivalent to the n = 0
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Floquet state PC, 0). Using this with the above set of dressed atomic states eq.(37), the

new dressed basis set (in this first order approximation), for a hydrogen atom originally

in the 2S field free state, for example, will have a non-zero population density only in the

dressed atomic states labelled 3, 4 and 7. Conversely, any population density in the dressed

atomic states 3, 4 and 7 of the dressed basis set, will each contribute to the population

density of the 2S state of the field free basis set. In order for population densities in the

dressed states 3 and 7 to contribute to the population density in the field free state 2S, the

laser field is required to provide (or absorb) a non-integer number of laser photon energies.

This is because the 2S and 2P field-free energies are, in fact, not degenerate, and because

E3 = E5 - hw and E 7 = E5 + hw, as asserted by Floquet theory. Although it is not

immediately obvious, the same problem is associated with the dressed state 4. Due to 2S-

nP (n>2) couplings, the energy of state 4 shifts with changing electric field strengths so that

E4 = E 2s. As mentioned in section 3, production of these non integer photons, is known

as the Raman effect, and as can be seen, a Raman photon will be involved whenever the

"dressed" transition amplitudes are projected on to the "measured" transition amplitudes.

This is considered an atom-field effect and will not involve the projectile directly. For

collisions within the dressed basis set, all energy differences for atomic transitions, are

accounted for by changes in the wave number of the projectile, plus the absorption or

emission of an integer number of laser photons.

To show the effect of the Floquet approach on a laser assisted collision, the 1S-2S

excitation in an electron-hydrogen collision

H(1S) + c- + Nh. - H(2S) + C + Mhw (40)
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will be considered for first order dressed atomic states. Table 1 shows the "dressed"

transition elements and their probability amplitudes when projected onto the "measured"

transition amplitude TIs 2s. These values can then be used in a first order Born-Wave

approximation. It is interesting to note that the 3 "dressed" transition amplitude elements

for T3 1 are the same as the 3 "dressed" transition amplitude elements for T71, with identical

changes in the projectile energy. In fact the transition amplitude elements for T31 are

duplicated for all transitions 1 - P where P represents all states

IP) = AI2Po,n) + Be' - 12S,n+l) + Be-' - 2S,n -1 )  (41)

This feature of the Floquet dressed atomic states is very useful for the closely coupled

calculations required in the Multichannel Eikonal Treatment of the collision, where the

infinite set of periodic states tend to make such calculations appear at first sight prohibitive.

Consider two members of the set P of states defined by eq.(41),

Y ,p, 1), energy level = Qp + hwv

and

I,/p, 0), energy level = Qp

In a transition between these two states, the change in projectile energy due solely to

the difference in energy levels is hw, ie -k 2  
- ' - hw, Then (= ",1i1V',O) = 0,

since a photon must be absorbed from the laser field in the transition, a photon which

neither I ,p, 1) nor 1 0) can absorb yet still preserve their energy levels. If however each

state is associated with a projectile of the same energy, forming a collisional wavefunction

Tp = V!,p exp(ik . R), then, for a collisional transition from atomic state d'p,0) to VP 1,
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the projectile can absorb the laser photon as is required, and regain the energy hw which

it lost in making the transition to the higher energy level. Hence the projection between

the two collisional wave functions is

( bp,11 exp(-ikf . R) exp(iki. R) [p,O) = 1 (42)

ie the wave functions are no longer orthogonal when

'k L - = (43)

This result can be extended to all other members of set P, with the same results for other

sets of periodically repeating dressed atomic states. This feature of Floquet dressed states

makes it impossible to define the probability amplitude of being in a given dressed atomic

state when combined with a projectile wave function. Or described another way the system

exists in a state of flux between all periodic states of the same form associated with a given

projectile energy. This necessitates a summation of the probability amplitudes over what

are termed "grouped" states (Smith 1991). Hence the entire infinite set of periodic Floquet

states can be included exactly within the closely coupled calculation. Although essential

for the Multichannel Eikonal Treatment these "grouped" states can be ignored in the first

Born approximation.

Inserting the contents of Table (1) into eq.(33), which relates the "measured"

transition amplitude to the "dressed" transition amplitude, TIs 2s becomes

Ts 2s = A 2VIs 2s ( k 2 1k 2

2 2+ ABVls 2PoC--6= - hw)

22



+ ABVs2poe ' 6 ' 6(Lk 2 1 k 2s+ hw)

+ ABVs 2Po(e 6w + e-i 6
w) 6(Sk} = 2r k 2Po,

B2Vs2s(l + - z2) 6 (k = 2-

2 i2 - + 1)b( = + 2 k w) (44)

In contrast the laser assisted differential cross section can be calculated using the traditional

time-dependent Perturbation theory (Bayfield 1979). For an oscillatory perturbing

potential

H(r,f) = -i,. r(e i'wet6" - C_-iW C- ) (45)

the perturbed or dressed wave function is

00
?2 =a(t) e- -"'st (46)

n= 0

where is a summation over the unperturbed atomic states and co is the energy level

of state 43. To a first order approximation this gives just three dressed states for the laser

perturbed iS, 2S and 2P 0 field free states

is = (47a)

2PS D102S) + i2t2o] + D2 i02P,) , (47b)

P, ,+ , 12)iwe' D12 -i"I -ib ),-i,p,/h0 2 R, DI 2 ) +D2 'po C a"' (47c)
= ( l~2 0 +Di 2s)cite6  + D2!,2s)Gw i e, ~ (4c

where D, = N. D2 = -i(0s3co • rj) and N is a normalization constant. Instead of

projecting the dressed states onto field free states, this form of approach assumes that the

dressed states collapse onto their field free source (Sharma and Mohan 1990). Taking this
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type of approach the TIs 2s transition amplitude becomes

1 2 2+ D2 IIs 2p e-" 6(lk= L-: k 2 S -hw)

+ D2VS 2petbw b(kf = 1 kS + hw) (48)

Comparing the Floquet dressed atomic states of eq.(37) with the Perturbative dressed

atomic states of eq.(47), it can be seen that each individual dressed state 0 has a very

similar form under both treatments. But the Perturbative approach does not predict the

infinite set of periodic states. This lack of an infinite set of states makes a great difference in

the "measured" transition amplitude, as can be seen by comparing the Floquet transition

amplitude of eq.(44) with the Perturbative transition amplitude of eq.(48). Not only does

the Floquet transition amplitude have more terms, or more paths for the transition, it also

has a 6&, dependence that will be preserved in the cross sections, whilst the &, dependence of

the Perturbative transition amplitude will clearly cancel out in the resulting cross sections.

By first predicting the infinite set of states, and then by writing the "measured"

transition amplitude in terms of the "dressed" transition amplitude, this Floquet model

provides two distinct areas of possible photon absorption and emission, which can be

denoted by the mechanisms (A,hw) and (e,A,hw). (A,hw) refers to the projection of the

dressed atomic states onto the field free atomic states, and gives rise to laser photon

absorption and emission and Raman photon emission. (e,A,hw) refers to the transitions

between dressed atomic states which requires the influence of the projectile, and which only

gives rise to laser photon absorp, ion and emission. There is a third area of possible photon

absorption and emission, which is omitted in this model that ignores the laser perturbation
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of the projectile. This can be denoted by the mechanism (e,hw), which refers to photon

absorption and emission by the projectile before and after the collision., When the full

laser perturbation is included, (section 6) there is no indication of such photon absorption

and emission, so that the multiphoton events, associated with the projectile, occur during

transitions between dressed states only, or is described by (e,A,hw). Hence (A,hw) and

(e,A,hw) adequately describe the mechanisms and sequence of all multiphoton events. It

can therefore be seen that this model provides a concise description of the projectile atom

collision in a laser field, where tht interactions (A,hw) and (e,A,hw), as recently described

(Newell 1990) are included exactly.
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5.RESULTS: e- + H(1S) + Nhw i - +H(2S,2Po) + Mhw

State-to-state cross sections for the 1S-2S and 1S-2P0 transitions, in laser assisted

e--H(1S) collisions, are presented in both the Multichannel Eikonal Treatment and the

Born-Wave approximation, as a function of impact energy and laser field intensity. All

cross sections shown are a summation over the state-to-state cross sections, for all possible

final projectile energies consistent with a given initial relative energy. Changes in the

final projectile energy arise from photon absorption and emission. The laser considered is

a monotonic, plane polarized C0 2 laser (hw = 0.117eV)., with the polarization direction

parallel to the initial projectile velocity. The restricted basis set - 1S, 2S, 2P 0 , and 2P±1

- is used for the dressing of the states, which in turn provide the basis set used within

the Multichannel Eikonal Treatment. The axis of quantization is along the direction of

incidence of the projectile electron, and as stated above is also taken as the direction of

polarization of the laser field.

Cross sections vs field strength are presented in Fig.6 and Fig.7, for Floquet dressed

hydrogen atoms wlice b, = 00. The cross sections are compared over a range of orders

of approximation for the dressing of the atomic states. It can be seen that there are

very striking differences between the different levels of approximation, especially between

the first order cross section (which fails to exhibit a second stationary point) and the

higher orders. It is also apparent for both the Born-Wave approximation (Fig.6) and

the Multichannel Eikonal Treatment (Fig.7) that at least a third order approximation

in the Floquet dressing is needed in order to reach convergence over the range of field

strengths studied. The divergence from convergence, for each order of approximation,
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occurs at successively higher field strengths. Cross sections vs field strength are presented

in Fig.8 and Fig.9 for Perturbatively dressed hydrogen atoms. In contrast to the Floquet

dressed atomic states, the Perturbative dressed atomic states produce cross sections with

very little significant difference between the successive orders of approximation. Although

convergence is not even satisfactorily reached by a fifth order approximation - a fifth order

cross section is nearly identical to a third order cross section, but a fourth order cross

section is distinctly different - a reasonable qualitative result can be obtained from a first

order approximation.

As the field strength c, rises, cross sections for both the Floquet dressed atomic states

(Fig.6 and Fig.?) and the Perturbative dressed atomic states (Fig.8 and Fig.9) show an

initial rise for the 1S-2S cross sections and an initial fall for the 1S-2P 0 cross sections. This

initial trend is due to the dressed atomic states S and P, which show increasing amounts of

each others zero field characteristics. The percentage 2P0 component in each of the dressed

atomic states S and P, presented in Fig.] 0 as a function of field strength, illustrates this in

a very visual manner for third order Floquet dressed and third order Perturbative dressed

states, (a) and (b) respectively. The plots of Fig.10 exhibit the play off between the

dressed states S and P, with each simultaneously giving up more of its intrinsic zero field

character, and adopting more of the other character. For both approaches to the dressed

atomic states, this character interchange continues past the point where the dressed state

S has a greater 2P(, characteristic than the dressed state P. It is to be expected that the

scattering cross sections would rise and fall according to the character of the dressed atomic

states, ie, the 1S-2S cross section, is expected to rise past the falling 1S-2P0 cross section
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as c, increases. This is the case for the cross sections produced by Perturbatively dressed

atomic states, where the plots of Fig.8 and Fig.9 exhibit a monotonic rise and fall in the

1S-2S and 1S-2P0 cross sections. But it is clearly not the case for cross sections produced

by Floquet dressed atomic states. The plots of Fig.6 and Fig.7 show cross sections, where

there are distinct peaks and dips, which seem to bear no relation to the character of the

dressed states. These peaks and dips arise from the contributions to the state-to-state

cross sections, from the infinite set of periodic states. The first order cross sections, of

Fig.6 and Fig.7, demonstrate very clearly the contribution to the cross section via the first

order terms only. As the field strength rises, the contribution to the cross section via the

first order terms increases, and these contributions, whilst initially augmenting, eventually

begin to curtail the rising change in characterstics, thereby causing the single stationary

point. For the second order cross sections, contributions are allowed from both first and

second order terms. As the field strength rises, the rising contribution to the cross sections

from second order terms is now added to the first order contributions. The second order

terms initially curtail, but then augment the rising change in characteristics, and eventually

managed to dominate the first order contributions to cause the second stationary point.

This distinct difference between the first and second order approximations to the cross

sections, emphasizes the role played by the higher order terms through the infinite set

of periodic dressed states. Since the infinite set of periodic states is not predicted in a

Perturbative dressing of the atom, contributions from higher order terms cannot occur.

Thus no stationay points can be expected, for the Perturbative cross sections, as the cross

sections follow the character of the dressed atomic states.
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It has already been explained in section 3 that any experiment would measure cross

sections over a range of phase factors bk,. Cross sections are presented in Fig.11 and Fig.12,

compared over a range of phase factors from b5, = 0' to 900. Cross sections for phase factors

in the range 90' to 3600 are a repeat of those shown. A model attempting to predict

experimental results, therefore requires averaging over the reduced range of 00 to 900

alone. The cross sections pertain to Floquet dressed hydrogen atoms, and are calculated by

the Born-Wave approximation (Fig.l1) and the Multichannel Eikonal Treatment (Fig.12).

Cross sections for Perturbative dressed atomic states are not presented, because of their

phase independence. The above results (Fig.6 and Fig.7), which illustrate convergence

in the cross sections for rising orders of atomic dressing, justify the use of a third order

approximation in the following cross sections. The Born-Wave approximation (Fig.1l)

and the Multichannel Eikonal Treatment (Fig.12) both show a range of different responses

of the cross section to the changing field strength. These range from the two distinct

stationary points exhibited by cross sections for b, = 00, and the single stationary point of

the cross sections for b, = 900. For 6, = 90' there are no contributions to the cross sections

from first or third order terms, so that the single observed stationary point is dependent

on the second order terms only. For phases between 0' and 900 the contributions from the

different orders vary, giving rise to the range of cross sections between the two extremes

described. Both the Born-Wave and the Multichannel Eikonal results are presented in

Fig.13 when the cross sections are averaged over the required range of phases, from b, =

0" to 90'. It is immediately noticed, while the dressed atomic states S and P practically

exchange zero field characteristics as the electric field strength rises, that the averaged
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cross sections for the 1S-2S and 1S-2P 0 transitions never cross. Also the field strength at

which the two cross sections are identical, is the same as the field strength at which the

dressed atomic states S and P each contain a 50:50 combination of 2S and 2P 0 field free

states. This non-crossing of the averaged cross section in Fig.13, is due to the projection

of the "dressed" transition amplitudes onto the "measured" transition amplitudes. If the

dressed atomic states S and P are dominated by each others zero field characteristics, they

will then contribute more to the state-to-state cross section of the character that dominates

them, via the infinite set of periodic states, than to the state-to-state cross sections of their

own zero field character. Hence a dressed state S, with a predominately 2P0 character,

contributes mostly to the 1S-2P 0 cross section, rather than the 1S-2S cross section. This

then leads to viewing the phase dependent state-to-state cross sections, as being variations

from these phase averaged cross sections. These variations occur due to constructive and

destructive interference. When the cross sections are averaged, the effect of the interference

is cancelled out. To contrast with this non-crossing of the cross sections in Fig.13, cross

sections vs frequency are presented in Fig.14 for third order Perturbative dressed atomic

states. For the Perturbative dressed atomic states, the 1S-2S and the 1S-2P 0 cross sections

do cross in Fig.14, with the cross sections again being identical at the same field strength

that the dressed states S and P each contain a 50:50 mixture of 2S and 2P 0 field free states.
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6.LASER PERTURBATION OF THE PROJECTILE

The full effect of the laser field is now considered by applying the laser perturbation

to both the projectile and the target atom. The perturbed Hamiltonian is

H = PR2 -LPR " A/c + 1 AZ/c2

+ l (Pri + A/c) 2 + V(r) + V(R,r) (49a)2

- Z PR A/c + p (AZ/C) 2 + HF + V(R, r) (49b)

in the center of mass frame of reference, where the Floquet Hamiltonian for the atom

=F Z i  + A/c) 2 + V(r)

has already been considered in section 2. The charge and the mass of the projectile are Z

and rn. For heavy particle collisions, rnp 4 p the reduced mass of the collisional system.

This difference occurs because the laser perturbation must be applied in the laboratory

frame of reference, and the resulting Hamiltonian is then transformed to the center of mass

frame of reference. The laser perturbations can be handled by treating the projectile and

the atom as isolated systems. The internal atomic portion has already been considered via

the solution of ide -- HFO in section 2. Thus a solution for the projectile Hamiltonian

HP = -P'- PR. A/c + '-(AZ/c) 2  (50)

only is needed. The wave function , which satifies the Schr6dinger equation i- = Hpl2,

is represented by

ex[ I.( PR- R + P R (A,,1c)cos(wr+6,) - a dr
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where a is a constant phase shift that cancels out in the collisional S-matrix. In the original

paper by Volkov (1935) the solution t is expressed in the general form

4)= xp I(PR.PR LPR (Ao/wc) sin(wi +b,,) -c)]Zo (52)

where Z is dependent on PR, Ao, w, rnp, 6, and x. If it is assumed that the only

dependence of Zo on x can be acknowledged by varying b,, then b,, can be easily varied

for any value of x, to give

wx+cb"=0 and Zo=1

for use in eq.(52) giving rise to the usual Volkov dressed wave function for a laser perturbed

plane wave

4= exp[ i( PR Ri + Z i.,(A,/wc) sin(wfb,) - a) (53)

In deriving the wave function eq.(53), the assumption has been made that there are no

transient effects arising from turn-on or turn-off of the laser, as is reasonable in this soft-

photon weak-field regime. Having set wx + 6,, and Z, = 1, it must be realized that 6, has

now taken on a definite and distinct value for each collision. If i = x is defined as being

the time at which the point of closest approach for the collision is reached, then 6 is the

phase shift of the laser field at the point of closest approach, as shown in Fig.1., In any

experiment, collisions will occur across a wide range of space and time. Thus 6& will not

be in general a constant for all collisions. As mentioned in section 3, a theoretical model

that purports to predict experimental results, must include an average of the collisions

over a range ,)f 6, from 0' to 360'.
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This dressed projectile wave function can now be combined with the dressed atomic

wave functions from section 2, and using the techniques of section 3 the laser perturbed

collisional S-matrix

Spq(i) = (4 pl'lq)bpq + i27r Tpq b(Qp + k + (n+x-m)hw - Qq - 'k?) (54)

can be derived. This S-matrix is of exactly the same form as eq.(33), with the new "dressed"

transition amplitude

Tpq A-~ 5 A"~; (40I VI+) J.,(D) ex' (55)
n m a X

The Bessel function argument D is - (k, - kf) . (Ao/wc), and as usual arises from a

Fourier expansion of the Volkov dressing of the projectile. The new conservation of energy

requirement is now

k k - (n + x -m) ho (56)

where the projectile contribution x, to the number of photons absorbed and emitted during

transitions between the dressed wave functions, is also included. The "measured" transition

amplitude T,, can now be written in terms of this new "dressed" transition amplitude Tpq,

as outlined in section 3.

Cross sections vs field strength are presented in Fig.15 and Fig.16, for third order

Floquet dressed hydrogen atoms, in a Born-Wave approximation of laser assisted e--

H(1S) collisions. Cross sections with the laser perturbation includcd for both the atom

and the projectile, are compared with cross sections that neglect the laser perturbation

of the projectile. It has already been shown that the Volkov dressing produces a very

significant effect on individual differential and integral cross sections, with a specific final
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projectile energy (Weinsgarthofer et al 1979, Byron et al 1987, Jetzke et al 1987, Sarkar

and Chakraborty 1988). When the state-to-state transition cross sections are however

summed over an increasingly wider range of projectile energies, corresponding to higher

order multiphoton events, the fully perturbed collisional cross sections converge on the cross

sections that include a laser perturbation of the atom only. This is clearly evident from

the cross sections displayed in Fig.15 and Fig.16. As would be expected, this convergence

improves as the initial impact energy increases. This study has only been conducted

using the Born-Wave approximation, due to the difficulties associated with producing

a practical numerical technique that can handle the Volkov dressed states within the

Multichannel Eikonal Prescription in a reasonable amount of computer time. Despite

the practical problems there is no difficulty in principle from using the new transition

amplitude, and there is nothing to indicate that the convergence exhibited by the Born-

Wave approximation would not be reproduced by the Multichannel Eikonal Treatment as

well.
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7.CONCLUSION

This work has studied laser assisted collisions, in a soft-photon weak-field regime,

for intermediate energy projectiles. Within this regime, the most appropriate method

of incorporating the laser perturbation of the atom, has been found to be the Floquet

prescription. This Floquet approach, with its predicted infinite set of periodic states,

is considered, by the authors, to be superior to the more traditional time-dependent

Perturbation theory with which it was compared, because it provides a very concise

description of projectile-atom collisions in a laser field. Unlike the time-dependent

Perturbation theory, the Floquet prescription exactly describes the location during the

collisional sequence of events at which photons are absorbed and emitted. From section

4, there are two distinct photon absorption and emission processes, allowed within the

Floquet approach. The first being absorption and emission by the projectile, during the

projectile-atom interaction (e,A,hw), and the second being absorption and emission by

the atom, well before and well after the projectile-atom interaction, (A,hw). The laser

perturbation (e,hw) of the projectile was also acknowledged in this work, in the form of

Volkov dressed projectile wave functions. It has however been shown that these projectile

states have very little effect on the state-to-state cross sections, when summed over all

possible final projectile energies consistant with a given projectile energy. These dressed

wave functions also gave no indication of allowing photon absorption or emission by the

projectile, before and after the projectile-atom interaction.

This work has also shown that the Floquet treatment provides cross sections with some

very distinct, interesting and new features, the most important of which are summarized
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below:

(a): When there is significant coupling between the atomic states, the Floquet

approach requires at least a third order approximation in the dressed atomic states, to

attain convergence in the state-to-state cross sections over the full range of field strengths

studied in this work. This convergence in the higher order dressed states is critical, since the

first order approximation does not even yield a qualitative indication of the overall variation

of the converged cross sections with field strength, and a second order approximation is

often not much better. This indicates that the contribution to the cross sections from the

higher terms in the atomic dressed states are important.

(b): The Floquet cross sections display a laser phase dependence of 8,. It has also

been shown that for comparison with experiment, it is necessary to take an average of the

state-to-state cross sections over this phase, from , = 0' to 3600.

(c): For a third order approximation the Floquet dressed atomic states can be written

in the general form.

IS) = A12S,'n) + Bei 6-12Po,n+1)+ Be-'6I 12Po,7-1)

+ cc2W- 12 S,i +2) + Cc-, 2112S, n -2)

+ Dc'3612Po,n-+3) + DC- 3 6-12Po,n-3) (57)

and

IP) AI2Po.n)+ B(+ ' 12,5 n+1 + Bc -'6- 2S, n-1)

=(,(,2 Lk,12 Po, 7 2'. ( -2 '. ? -,o 2)il

± Dc 3 ' I2S,v-+3) + Dc- 3  12S, n -3) (57)
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If these dressed atomic states S and P are plotted against field strength then the

dressed states practically exchange intrinsic zero field characteristics as the field strength

rises. Eventually the dressed state S will have a greater 2P 0 character than the dressed state

P. Despite this character interchange of the dressed states, the 1S-2S state-to-state cross

section never rises a.ove the 1S-2P 0 state-to-state cross section when the phase averaged

1S-2S and 1S-2P 0 cross sections are plotted against field strength. This is demonstrated

in Fig.17 for electron hydrogen collisions using Floquet dressed atomic states. It should

be noticed that the lS-2S and 1S-2P 0 cross sections have the same value, at precisely the

same electric field strength that the dressed states S and P have a 50:50 composition of 2S

and 2P 0 field free states.

Where ever possible, numerical calculations are based on both the Multichannel

Eikonal Treatment and the Born-Wave approximation. Both treatments produce similar

qualitative variations to the cross sections with electric field strength, and any quantitative

difference tends to orginate from the difference between the field free scattering theories

adopted.
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FIGURE AND TABLE CAPTIONS

Figure (1): Vector potentials A, cos(wi + b,,) and ........ A, coswt, for a

monotonic plane polarized laser field of frequency w, positioned in time relative to the

orbit's pericenter at time t = 0.

Figure (2): A restricted two state Floquet matrix for the 2S and 2P 0 states of a hydrogen

atom in a laser field, is shown for Floquet N - n= -1, 0, and 1, where an unrestricted matrix

would have Floquet N2- up to ±oo. The matrix is diagonalized to determine the "Quasi"

energies Qq and the dressed atomic states Vq.

Figure (3 a-c): Radial distribution functions of the dressed atomic states S and P, for

a third order Floquet dressed hydrogen atom, are compared for increasing electric field

strengths of a monotonic CO 2 laser field of photon energy hw = 0.0043au.

Figure (4). The percentage 2P0 component vs field strength, of the dressed atomic states

S - and F ----- , are compared for a hydrogen atom in a laser field of photon

energy hw = 0.0043au.

Figure (5): Energy level diagram, E = E0 + hw, of the hydrogen dressed atomic states S

and P at a photon energy of hw = 0.0043au.

Figure (6): Cross sections vs field strength for the 1S-2S and 1S-2P 0 transitions, (a) and (b)

respectively, in e--H(1S) collisions in a laser field, using Floquet dressed hydrogen atoms

and a Born-Wave approximation, are compared over a range of orders of approximation
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for the Floquet dressing (P. =. ............ = 2 , .-------- = 3rd and

= 4 th order) at a photon energy hw = 0.0043au and 6,, = 00. The laser perturbation is

included for the atom only.,

Figure (7): Cross sections vs field strength for the 1S-2S and 1S-2P0 transitions, (a) and

(b) respectively, in e--H(1S) collisions in a laser field, using Floquet dressed hydrogen

atoms and a Multichannel Eikonal Treatment, are compared over a range of orders of

approximation for the Floquet dressing (. - =_ 1st ....... = 2 nd, - - -- -= 3 rd

and = 4th order) at a photon energy ha, = 0.0043au and 6,, = 00. The laser

perturbation is included for the atom only.

Figure (8): Cross sections vs field strength for the 1S-2S and 1S-2P 0 transitions, (a)

and (b) respectively, in e--H(1S) collisions in a laser field, using Perturbative dressed

hydrogen atoms and a Born-Wave approximation, are compared over a range of orders of

approximation for the Floquet dressing ( - - -= 1st ._. 2nd  =

3 rd,------ = 4 th and - = 5 th order) at a photon energy hw, = 0.0043au. The

laser perturbation is included for the atom only.

Figure (9): Cross sections vs field strength for the 1S-2S and 1S-2P 0 transitions, (a) and

(b) respectively, in laser assisted e--H(1S) collisions using Perturbative dressed hydrogen

atoms and a Multichannel Eikonal Treatment, are compared over a range of orders of

approximation for the Floquet dressing ( = jst, 2 - d, -

3rd, -. = 4 th and ____ = 5th order) at a photon energy h,; = 0.0043au, The

laser perturbation is included for the atom only.
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Figure (10): The percentage 2P0 component vs field strength, for the dressed states

S - and P ----- , are compared for both Floquet and Perturbative dressed

hydrogen atoms, (a) and (b) respectively, in a laser field of photon energy h,, = 0.0043au.

Figure (11): Cross sections vs field strength for the 1S-2S and 1S-2P 0 transitions, (a) and

(b) respectively, in laser assisted e--H(1S) collisions using third order Floquet dressed

hydrogen atoms and a Born-Wave approximation, are compared over a range of phases &

( = 00,------ = 22.5, ........... = 450 ,...... = 67.5' and----- =

900) at a photon energy hw = 0.0043au. The laser perturbation is included for the atom

only.

Figure (12): Cross sections vs field strength for the 1S-2S and 1S-2P 0 transitions, (a) and

(b) respectively, in laser assisted e--H(1S) collisions using third order Floquet dressed

hydrogen atoms and a Multichannel Eikonal Treatment, are compared over a range of

phases 6,, ( = ' - - - - = 22.5 ....... = 450 ,  = 67.50 and

- - = 90') at a photon energy hwv = 0.0043au. The laser perturbation is included for

the atom only.

Figure (13): Cross sections vs field strength for the 1S-2S and 1S-2P 0 - -

-- transitions in laser assisted e--H(S) collisions using third order Floquet dressed

hydrogen atoms are compared in the Born-Wave approximation and the Multichannel

Eikonal Treatment, (a) and (b) respectively, at a photon energy h' = 0.0043au. The cross

sections are an average of phase dependent cross sections for ,. = 0" to 90", and the laoer

perturbation is included for the atom only.
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Figure (14): Cross sections vs field strength for the 1S-2S - and 1S-2P 0 - - -

- transitions in laser assisted e--H(1S) collisions using third order Perturbative dressed

hydrogen atoms are compared in the Born-Wave approximation and the Multichannel

Eikonal Treatment, (a) and (b) respectively, at a photon energy hw = 0.0043au. The laser

perturbation is included for the atom only.

Figure (15)- Cross sections vs field strength for 1S-2S and 1S-2P 0 transitions, (a) and

(b) respectively, in laser assisted e--H(1S) collisions using third order Floquet dressed

hydrogen atoms and a Born-Wave approximation are compared with the laser perturbation

included for the atom only ( _ ) and the laser perturbation included for both the

atom and the projectile, where the later cross sections are a summation over a range of

final projectile energies (. - . = ±20hw, ....... = ±25hw and ----- = ±3Ohw

about the field-free final projectile energy). The phase 6, = 00 and the photon energy

hw = 0.0043au.

Figure (16): Cross sections vs field strength for IS-2S and 1S-2P 0 transitions, (a) and

(b) respectively, in laser assisted e--H(1S) collisions using third order Floquet dressed

hydrogen atoms and a Born-Wave approximation are compared with the laser perturbation

included for the atom only ( ) and the laser perturbation included for both the

atom and the projectile, where the later cross sections are a summation over a range of

final projectile energies ( :- ±20hu, = :25h,,: and - - - - = +30h,

about the field-free final projectile energy). The phase 6, = 90' and the photon energy

hw = 0.0043au.
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Figure (17): Cross sections in e--H(1S) collisions are compared against the 2P0 component

of the dressed atomic states, (a) and (b) respectively, over a range of electric field strengths

for third order Floquet dressed hydrogen atoms in a latedr field. The cross sections 1S-2S

___ and 1S-2P 0- - - - - - are an average of the phase dependent cross sections over

a range of phases from 6,, = 00 to 900, using a Multichannel Eikonal Ttreatment. For the

percentage 2P 0 component represent the dressed state S and ----- represent

the dressed state P.

Table (1): "Dressed" transition amplitude elements Tpq, final projectile energies -k'}

and coefficients of the "dressed" transition amplitude Tp. within the "measured" transition

amplitude TIs 2 S.
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Table (1): "Dressed" transition amplitude elements Tpq. final projectile energies 2, f

and coefficients of the "dressed" transition amplitude Tpq within the "measured" transition
amplitude TIs 2 S.

"Dressed" Final Projection operator

transition amplitude projectile probability amplitude

matrix elements Tpq energy from Tpq onto TIM2sT41 = AVIs2s -Lk2. = -Lk2 A
a . Lk 2 =_Lk2

T41 = BeS2Poe -& 6 . 2;& f 2ps + ?iw A
T4 1 = BVs~poe +  -Lk 2 = -Lk 2s - ?w A

2o f2 2

T31 = AVls2M, -Lk2 = -Lk2 Be + ib

T31 = BVIs2 se- '6"  - k2  _k +hw Be+ 6 ,
21A f 2jA 2

= BVIS 2se 6l -I- k2  + ,w
2 , --I A 2 -  -1 Be+

TI = AVSpo -Lk2 = .=-Lk. Be -

TTI = BV 1 5 2 3 6e I k2/ + ?w Be - 6

Tnr = BVIs 2se + 6  - k 2 = .k 2, _ Be-,
21 ....&--2P _
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Figure(l): Vector potentials Ao cos(-t - and A. cos't. for a

monotonic plane polarized laser field of frequency c. positioned in time relative to the

orbit's pericenter at time t = 0.,
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of a monotonic CO, laser field of photon energy h,,, = .0043au.
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Transport-Collisional Master Equations for Termolecular Recombination

M. R. Flannery
School of Physics

Georgia Institute of Technology
Atlanta, Georgia 30332-0430

Abstract

Sets of Transport-Collisional Master Equations are developed for the microscopic distribution n(R, E, L)
of pairs over internal separation R, energy E and orbital angular momentum L of (A-B) pairs in a background
gas M of variable density. Expressions are also provided for the rate of recombination of A and B as a
function of gas density. Analytical solutions for the pair distributions n and microscopic probabilities for
recombination are obtained in the classical absorption limit. They pertain to exact (A-B) trajectories under
general symmetric interaction V(R) between A and B and are applied to ion-ion and electron-ion collisional
recombination in a gas. A classical variational method is also presented.

1. Introduction

In previous papers' - 4 , the rate a for termolecular recombination,

A+ B+ M Z AB+M (1.1)

kd

of species A and B (assumed structureless) in a low density gas M was considered by exact (quasi-
steady-state1 and variational2 ) treatments and by various approximate methods based on energy-diffusion',
bottleneck1 and electrical analogues4 . The exact treatmeatE1' 2 involve the solution of either a one-
dimensional set of integral equations for the relaxation of the (A-B) pair distribution n(E) in relative energy
E or a variational determination of n(E) with respect to external parameters varied to yield the minimum
rate a. Both procedures 1'2 are equivalent to a quasi-steady-state distribution n(E) among highly excited
levels E. Ion-atom association5 at low gas density involves the solution of a two-dimensional set of integral
equations in E and in relative (orbital) angular momentum L of the associating (A-B) pair.

The aim of this paper is to develop the appropriate generalization to all gas densities, when there is
non-equilibrium not only in the E and L degrees of freedom but also in the (A-B) internal separation R.This
inhibited relaxation arises from the increased difficulty of transport of A towards B by diffusional-drift
through the gas M. The two particle phase-space distribution n(R, p; I) of (A-B) 'nair.- with respect to R
and relative (orbital) momentum p = MABV is then governed by the microscopic 1ranbsort equatione ,

d On
Wn(R, p; t) =- + v. VRn - VRV. Vpn (1.2a)

On
-" t- + [V R • (nv)]p - VRV . [Vpn]R (1.2b)

where V(R) is the energy of mutual interaction between A and B with reduced mass MAB. This transport
rate is then set equal to the input-output rate for the net collisional production at fixed R of state p from
all states p' of the pair (A-B). A Boltzmann equation for n(R, p; t) is then obtained8 and is valid for dilute
concentrations of reactants A and B in a gas bath M of general gas density N so that (A-B) collisions with
the gas M provide the dominant state changing mechanism. Naumann 7 has recently reproduced the same
basic equation6 via an alternative stochastic route.
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The next development s was the transformation of (1.2) for symmetric V(R) to the more natural form,

d 2t) an, +1 a (3);Tn(R, Et L';)= E,, + - j [R n(R, E, Ll;)vR].,L2,  (1.3)

for the resulting R-symmetric (A-B) pair distribution n,(R) - n(R,E,,L 2) over R, E, and L'. The
radial speed dR/di is VR so that the microscopic radial current of pairs expanding and contracting at R is
j, = 4IrR2 n,VR per unit interval dE dL,, which is conserved and which depends only on E, under equilibrium
in R, E, and L2 (Appendix A). The collisional RHS of the Boltzmann equation6 may now be written in the
collisional input-output form,

dn(R, E,, L[dE [n,(R)vq(R) - nj (R)v(R)](.

where i,' is the frequency per unit dEjdL2 of state changing E,,L, -- EJ,L ! transitions produced by
collision between the (A-B) pairs in state i and the gas species M and the integrations are over all E! and
Lf accessible at a given R.

The above two developments6 ' s of (1.2) and (1.3) now facilitate the constri tion in this paper of two
sets of Transport-Collisional Master Equations for the pair microscopic distribution n(R, E, L2) and the
L2-integrated distribution n(R, E). The sets essentially represent three-dimensional (R, E, L2) and two-
dimensional (R, E) integral equations respectively. The two-dimensional (R, E) set is however composed
of two separate sets, each valid in exclusive regions of (R, E) space which become coupled via boundary
conditions at the (R, E)-interface. The full sets are in general difficult to solve by customary numerical
algorithms.

In this paper analytical solutions are obtained in the absorption or classical limit, when the back-coupling
terms vf, in (1.4) are consistently neglected. Analytical expressions are then derived for the probability
PA(Ro, E, L 2 ) for association of (E, L2 )-pairs with internal separations R < Ro and for the various L2 -
and E-averaged probabilities, PA(Ro, E) and PA(Ro) respectively, as a function of gas density. Not only
does this analytical route provide further detailed insight into recombination but also the strategy therein
suggest procedures valuable for eventual detailed numerical solution of the full Transport-Collisional Master
Equations.

In this paper the recombining species A and B are assumed structureless and the recombination proceeds
via collisional and transport relaxation in the relative (A-B) coordinates R, E and L 2 in the (atomic or
molecular) gas. Even with this simplification the resulting set of three-dimensional transport-collisional
equations are quite complicated. Generalization is however required to cover the possibility of recombination
process to cover the possibility of recombination process

XC+ + Cl- + Xe -, XeCl + 2Xe (1.5)

where the new two-body tidal mechanism introduced by Bates and Morgan'0 ,

{Xe+(v,, J,) - Cl-}-, --+ {Xe+(vj, Jj) - Cl-}, -, XeCZ + Xe (1.6)

is mediated by collisions with the third bodies M and was shown by their recent computer simulation10

to be necessary in order to explain the observed" production of XeCl rather than Xe 2Cl as implied by
(1.1). Although the 'two-body' rate of (1.6) involving orbital - internal energy conversion can in principle
be added directly to the collisional RHS of (1.4), the interaction V(R) between Xe+ - Cl- is however
orientation dependent and the transport side (1.3) must be so modified. Inclusion of this aspect within the
present theory is feasible, but implementation involves an additional order of complexity to what is already
a multilayered structure. The detailed inclusion of orientation dependent (A-B) interactions V(R) will be
considered at a later stage.

Since the time-dependent set of equations based on (1.3) and (1.4) can be reduced to a time-independent
set via a quasi-steady state (QSS) criterion for highly excited bound (A-B) pairs, some background discussion
of QSS is useful.
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1.1 Quasi-Steady-State (QSS) Approximation:

Association (1.1) which proceeds at forward rate a(cm'3 s- ) is coupled with the reverse process of
dissociation which occurs at frequency kd(s-'). Both processes are naturally time dependent and the
measured rate constants a and kd satisfy

dNA,B(t)
dt - -aNA(t)NB(t) + kdNAB(t) (1.7)

where NA, NB and NAB are the time varying concentrations (cm - 3 ) of reactant and product species. The
rate constants a and kd can however be determined by a time independent procedure ' 9 in which association
and dissociation can be treated separately.

Association emerges" ,9 in the time independent picture as if equilibrium concentrations RA and 9B of
the dissociated species A and B with relative energies E in the range 0 < E, < oo (which defines a reactant
block C) are collisionally transferred via an intermediate block £ of highly excited states in the energy range
0 > El > -S to a product block S of fully stabilized molecular levels in the energy range -S > E > -D
where -D is the lowest energy level of the molecule AB (cf. Fig. 1 of ref. 1). The energy level -S lies within'

at most 20kT below the dissociation limit. The intermediate block C is in quasi-steady state (QSS) since
collisions occur in a time scale much shorter than the characteristic time for overall recombination and the
stabilized product block S is considered to have zero population in the time-independent treatment. The C
block is depleted and the S block is filled at a rate aNANB via the steady state conduit of E-block levels.

Dissociation emerges ' 9 in the time-independent picture as if a thermal concentration NAB of pairs in
the S block are collisionally transferred through block E to block C maintained at zero population. The rate
constants so deduced satisfy the detailed balance relation,

AB= kdAB. (1.8)

The QSS procedure is equivalent to seeking the lowest eigenvalue Ao = kd in the expansion of the time-
dependent distribution ni(t) of level i in terms of the basis set e- t with j=1, 2, ... which define various
timescales of relaxation. After initial transients described by the rapid time decay dependencies exp(-Alt),
exp(-A 2t), etc. the internal degrees of freedom then quickly relax into a quasi-steady-state which is slowly
decaying as exp(-kdt). It is this final relaxation which is of interest here.

2.1 Basic Theory: Exact Rate in Collisional and Transport Representations

On assuming that (A-B) pairs in the block E of highly excited bound levels are in quasi-steady-state,
the rate of collisional termolecular recombination is the collisional net current,

Q NAN1B lB , 10 ' AR dEf L,,R dL~ [n,(R)av'1 (R) -nfRv( (2.1)
fE' T " \VV(R)

which is constant across an arbitrary level E = - I E I embedded in block C. When E = 0, (2.1) is
simply the net collisional rate of production of bound pairs, or depletion rate (1.8) of dissociated pairs and is
appropriate for pure (A-B) Coulombic attraction V(R) = -e2/R which does not support any bound levels
with positive energies.

Here n,(R) - n(R, E,, L') and n,(R)dE, dL2 dR is the number density of (A-B) pairs with internal
relative energy E,, internal relative angular momentum squared L2, and internal separation R in the
interval dE, dL dR about (E,, 2, R). The frequency of collisions with third bodies for (E,, L,
E1 + dEj, L 2 + dL') transitions at fixed (A-B) separation R is .,,(R)dEfdL2. Also R, denote the orbit's
pericenter (-) and apocenter (+) or turning points of radial motion under the effective interaction

(2.2
VI(R) = V(R) - -MA-- (2.2)

2MAB R2

The maximum value L,,, of angular momentum L = R x p, accessible at fixed E, and R is Rp, and is
determined also from E, = V,(R) so that

3



Lm(R)= 2MABR 2 [E, - V(R)] =Rp, = MABR,,(R), (2.3)

where p, is the momentum for relative (A-B) motion. with speed v,. The maximum L2 accessible overall at
given E, is either infinite for dissociated pairs (E, > 0) or is L2 0 given by (2.3) evaluated at the radius R0
for bound (E, < 0) circular orbits (where 0Vl/OR = 0). In thermodynamic equilibrium at temperature T
the distribution of pairs over R, E, and L2 is (Appendix A),

R NABe - EIkT 2r(
,(R) = ii(R, E,, L ) -- (2IrMABkT)312 R2 VR (2.4)

where the radial speed VR of relative (A-B) motion is determined from the energy relation,

E= 1 MABV R + V(R)+ L' 1 MABv2(R) + V(R). (2.5)
2 2MAB 2

The one-way equilibrium collisional rates,

Cf(R) = iii(R)v,,(R) = Rf (R)vf,(R) = C,(R) (2.6)

satisfy the principle of detailed balance. The recombination rate (2.1) then vanishes under equilibrium
conditions. The rate (2.1) with E = 0 may now be rewritten in terms of the fractional distribution,

pi(R) = n,(R)/Ri(R), (2.7)

which represents the departure of i-pairs from thermodynamic equilibrium, as

aNANB = I dE, dL, j dR dEf fj P1 dL2 [p,(R) - pf(R)] Cif(R). (2.8)
0R 0 V() 0o

This rate may alternatively be rewitten in terms of,

P,(R) = 1- nL- = 1- pf(R) (2.9)n,,v,i o, (R)'

introduced here as the probability for subsequent collisional stabilization of an f-pair collswnally produced
in a bound level I - (El, L2) from a dissociated i-pair. Then,

aNANB = dE, dL2,  dR dE! n,(R)v,!(R)PS (R)dL2, (2.10a)

J (R) Jo

in the collisional representation, which in turn can be rewritten as,

-NN lip°d,[ ,Ro fj.O,,

-NAN- = lim /dE, dL, dRf dEf n,(R)vS(R)P(R)dL (2.1Ob)
Ro-joo fo fo R V(R) fo

where p2 = 2MAB(E, - V(Ro)). Provided R0 is large enough so that equilibrium in (E,, L2) is collisionally
maintained then the distribution p,(R) = py(R) = p(R) for R > Ro is independent of (E,, L,) and P5 of

(2.9) then vanishes for R > Ro. As Ro , then p(R) - p,, the normalized distribution maintained to
preserve steady-state.

F rom (1.3) and (1.4) the micrcscopic steady-state distributions satisfy the collisional-transport set of
Master equationss

+ - R2n(R) I UR liE,, = - J j dL} [n (R)vfy(R) - n (R)vf,(R)] (2.11)
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when n, (R) and n,- (R) are the respective distributions of pairs which are radially expanding (+) or radially
contracting (-) at R, ie. n+ and n- are respectively characterized by postive (vR > 0) and negative (vR < 0)
radial speeds vR. These distributions are coupled via the boundary conditions,

n- (R - o) = n(R) (2.12)

at infinity and the pericenter R- for dissociated states i, and by

n- (R-) = n-](R-) (2.13)

n- (R+)= u+(R+)

at the apses R of bound orbits f. Within each set, the collision frequency vz, couples the distributions
n. with all (Ef, L') state-distributions. The two sets of integro-differential coupled equations (2.11) for n,+

and n,- are coupled via their boundary values (2.12) and (2.13). Simple as (2.11) appears, this general class
of partial integro-differential equations involving boundary-value conditions are notoriously difficult to solve.
The Volterra type equation (2.11) has as yet not been solved theoretically or numerically. Simpler versions
of (2.11) are currently receiving much attention in the mathematical literature12.

Addition of (2.11) for n. and n.- provides the microscopic continuity equation in terms of the microscopic
net radial current,

J,(R) = J(R, E, L') = [n,+(R) - n- (R)]VR (2.14)

across R as,

1 [R2(n+ - n)L dEf dL2 [n,(R)vij(R)-nj(R)vf(R)] (2.15a)

R2 T VyR 11 -J(R) d

or as,

1 0 (R) - dEf dLf [pi(R) - p1(R)] Cf(R), (2.]5b)W R _ fOR (R)

which is expressed in general terms by,

V., = ni(R) f dE, j dL vf (R)P (R). (2.15c)

Collisional depletion and production terms involve the summed distribution n, = (n+ + n-) which
appears on the right hand sides of (2.15), while the difference (n+ - n-) appears on the transport side.
Upon integration of (2.15) between R- and o, the rate (2.1) or (2.8) across the dissociation limit E = 0
may then be expressed in the equivalent transport representatzon as,

aNANB = R--nooI dE, ]o dL, [47rR i-(Ro)vR] p-(Ro)PA(Ro) (2.16)

where the one-way equilibrium fiux (Appendix A)

47rR 2i H VR = 47r2 NANBe-E/kT/(27rMABkT)3/2 (2.17)

across R is, by (2.4) independent of R and L2. Also the normalized distributions are,

p1$(R) = p'(R,EL )- nE(REL) (R) (2.18)

+(R,E,,L) ii(R)

5



and

n (R) p(R) (2.19)
, (R) -(R)'

is introduced here as the probability for association within a sphere of radius R of all contracting i-patrs which
enter the R-sphere. Of the radial microscopic flux 47rR 2n IR I at R only a fraction PA(R) eventually
becomes associated as exhibited by (2.16).

The set of Master Equations (2.11) yield, for the normalized distributions (2.18) to

-(R2p±(R))=: 0 dEf J dL2 [p± (R) - ± (R)] C± (R) (2.20)R 1R(R)

where the one-way equilibrium current , n± VR, and where the forward and backward one-way equilibrium
collisional rates between levels i = (E,, L ) and f are,

C± (R) = Ri (R)vj(R) = R' (R)vp,(R) = C'(R) (2.21)

which satisfy detailed balance.Then (2.20) with (2.17) reduces to,

[O R) E.,, J= (R) dE dLf [p ,(R) - pi(R)] (v, (R)/vR) (2.22)

This set is solved according to boundary conditions,

ps" (R - oo) = 1; pt (R, E, -+ oo) = 1 (2.23)

and

p (R,-) = ',(R-)
t+R+ I t;(+ (2.24)

which in effect serve to couple both (±) sets of integro-differential equations (2.22). Since L? 2 (2mE,)p2

where p is the impact parameter, then the transport representation (2.16) of the rate can be rewritten as
the (R0 - oc) limit of

a [ T] 1/2 ""'d J 2rp dp p7(Ro)PA(Ro) (2.25)
[7rMAB 0J

where f = E/kT, and where

p02 = R2[1 - V(Ro)/E,] (2.25)

is the maximum impact parameter accessible for formation of pairs with R < Ro at energy E,.
Many mathematical complexities exist in determining the theoretical and numerical solution of the

general class of equations subject to boundary (not initial !) conditions, as represented by (2.22)-(2.24).
While investigations into appropriate numerical procedures are currently in progress, it is important now to
contruct simplified models suggested by the respective collisional and transport forms (2.10) and (2.16) for
the rates and reported in the following sections with the aim that new insight and conclusions will emerge,
without the necessity of detailed solution. The models will then in turn suggest various procedures valuable
for eventual detailed numerical solution.

3. Improved Classical Treatment

Treatments which include forward collisional couplings v,/ and neglect backward collisional couplings
vf, are termed classical in the sense that the set of coupled equations (2.11) or (2.20) are thea replaced by
the two sets of uncoupled equations in n' and n- which contain only absorption (loss) terms and which can

6



be solved in closed analytical form. Classical solutions in the sense as defined here therefore only include
collisional absorption from dissociated states (E., L2).

3.1 Analytical Rate with Collisional Absorption. Physical Assumption:

Neglect the redisociation terms nf vf, which collisionally populate continuum level i in (2.1) from the
bound states f for R < Ro. Thus P',(R) the stabilization probability (2.9), is unity for R < Ro. Assume
that thermodynamic equilibrium in E,, L (but not in R) is collisionally maintained at fixed R for pairs
with R > Ro, so that pi(R) = pI(R) for R > R0 is independent of (E,, L2). The stabilization probability
Pt, (R > Ro) of (2.9) then vanishes. Thus Ro is assumed to be sufficiently small that the net effect of
collisions at R < Ro is pure absorption, depleting the dissocation channels, and yet is sufficiently large that
the net (input-output) effect of collisions at R > Ro is to maintain thermodynamic equilibrium in E, and
L , whereby preventing any stabilization from occurring outside Ro.

The total frequency fcr collisional destruction of continuum states i in (2.11) may be taken for small
R < Ro as the total collisicnal frequency in (2.10) for direct formation of all bound levels, ie.

v,(R) = dEf v~y(R)dLf f dEfj vqf(R)dLf (3.1)
(R) 0 R) 0

In this approximation the bound pairs are now fully stabilized against redissociation for R < Ro and are
therefore considered as the recombined products. The recombination rate (2.9b) then reduces to,

2o 2 iR

aRANE = ci(Ro)n(Ro) dE, dL, f [47rR n,(R) I tR I] V - dR, (3.2)
f o, o JR V

in the collisional representation. Even though both representations, colhtstonal (2.10) and transport (2.16),
are equivalent, physical insight and algebraic development is facilitated more readily via the transport form.

3.2 Analytical Solution for R < RO: Nonequilibrium in E,, L2 and R.

On ignoring therefore, the backward rates nf v, for collisional repopulation of level i, each set of coupled
Master equations (2.11) reduces to

1-ja [R2 n:v] ,L = -n (R)v,(R), R < Ro (3.3)

for pure absorption within R < Ro. Here and below, VR is now used to denote the positive radial speed
IVR 1. Eqns. (3.3) are coupled by boundary conditions (2.12) and (2.13). Since p, - n,/ii:, (3.3) is then

Op (R)] = (R) p, R < Ro (3.4)
OR VR Es -

which follows also from (2.22). When integrated subject to boundary conditions p, (Ro) at Ro and
p - (R-) = p+ (R- ) at the pericenter R- (3.4) provides the distributions

n'(R) v(R)
p-(R) = n.,(R) = p,-(Ro)exp f dR] (3.5)

for pairs contracting at R, and

p+(R) = n+(R) = p(R)exp R v (R)dR

ii+(R) [ F. y

= P(Ro) exp - dR I exp - P R ,P< Ro, (3.6)
R7tR J R. R J



for pairs expanding at R, respectively. It is now simpler to insert these distributions into the two-dimensional
transport representation (2.16) rather than into the equivalent three-dimensional collisional representation
(3.2). In either case however the rate reduces to,

aNANV = dE, dL? [4R ' 2 (Ro)VR] p,- (Ro)PA(Ro) (3.7)

where,

Po = 2m[Ei - V(Ro)I (3.8)

and where the probability (2.19) for association within Ro of (R < Ro) pairs now takes the simple form

P,A(Ro) = 1 - exp I- f Ru .R 39

for absorption within the segment R- < R < Ro of the trajectory enclosed by the sphere of radius Ro. The
integrand,

v(R) dR = vi(R)dt = ds, = -d, (3.10)
V =-, = A,

is the elemental probability that A-B collides with M during time interval dt, or within trajectory element
ds, of their actual (E,, L,2)-orbit s, for A-B relative motion at speed v,, Hence,

PA(R) = (Ro) = [-exp(- : (3.11)

is simply the probability for (A-B)-M collisions with microscopic free path length A, = v,/v, towards any
collision within the portion of the orbit enclosed by a sphere of radius Ro.

Binary Decomposition: When the (A-B)-M collisions at a given pair separation R(A-B) can be
decomposed as binary (A-M and B-M) collisions (an excellent decomposition for ionic species A+ - B- in
a neutral gas), then V, = VA + 14B so that A,-' = A + A-'. Then (3.11) factors as,

P,A(Ro) = 1 - SASB (3.12)

which decomposes as,

P,' (Ro) = PA(Ro, A,) + PA(Ro, A,B) - PA(Ro, A,A)PA(Ro, A,B), (3.13)

where the probability of survival against either (A .M) or (B-M) collisions within the segment is

SA,B := exp { o I R :}.A (3.14)

This decomposition holds only at this (E , L 2) microscopic level (cf. §3.3). The corresponding probability
for association arising from an individual collision within the trajectory is

P,A(Ro A,A,B) = 1 - SA,B (3.15)

The above bznary assumptzon leads quite naturally to the decomposition in (3.13) of the (E,, L,2 )

microscopic probabilities for individual collisions. Since the sum PA(AA) + PA(AB) includes the probability
PA(AA)PA(AB) for simultaneous collisions twice, the simultaneous probability must be subttacted as in

(3.13). Note that the above solutions (3.5) and (3.6) of (3.3) for the normalized distributions p' and
(3.11) for the microscopic probability of association show quite directly that these E,, L,2-pairs are not in

8



equilibrium with respect to L,2 in this classical approximation since p, are clearly dependent on L. The
distribution p,- (Ro) of pairs contracting at Ro may be in L2-equilibrium.

3.3 Averaged Association Rates and Probabilities

With the aid of Appendix A, the rate (3.7),

NA oB =odE R p2dL 2 [4rR2 ii-(Ro, E, L2)vR] p-(Ro, E,L )pA(Ro;E,L2 ) (3.16)

may be rewritten as,

a = y f ee-' dcP p'(Ro, E,p)PA(Ro;E,p)dp2  (3.17)

where p is the impact parameter associated with the (E, L,)- trajectory. Here L2 = (2MABE)P2, c E/kT,
is the mean speed (8kT/IrMAB)' 12 and p2 = Ro2 [1 - V(Ro)/E]. On performing the L. and E-integrations,

then with the aid of Appendix A,

9= ( ,,) dE[4rR -(Ro,E)]p-(Ro,E)PA(Ro, E) (3.18)

=W -ee' de p p-(Ro,E)PA(Ro,E) (3.19)

= p-ij (Ro)P' (Ro); 2 = R2[1 - V(Ro)lkT] (3.20)

where the integrated densities and distributions are given by

R22,

n- (Ro, E) = n- (Ro, E, L2 )dL2 = p- (Ro, 2)ai (Ro, E) (3.21)

and,

n- (Ro) = n- (Ro, E)dE = p- (Ro)i- (Ro). (3.22)

Also,

,prp- (Ro, E)PA (Ro, E) = j p- (Ro, E, p)PA(Ro; E, L2)dP2  (3.23)

and

7rp.2Oa- (Ro)PA(Ro) = c e-' dc rpop - (Ro, E)pA(Ro,E), (3.24)

define the appropriate L 2 and (L , E,) averages, PA(Ro, E) and PA(Ro), respectively, of the original
microscopic association probability (2.19).

In the absorption limit,

pA(RO, E, Ld2 ) = I -exp {stf (3.25)

and for general interactions V(R), analytical expressions for PA(Ro, E) and pA(Ro) can be deduced under
various equilibrium conditions.

For Ro sufficiently large, the distribution of pairs contracting at Ro is in equilibrium with respect to L.
Then

9



(REL)- (REL2)n-(RE) (3.26)n." (R, E)

so that p- (Ro, E, L2 ) = p- (Ro, E) is now independent of L. The 2-averaged probability in (3.23) becomes

PA(Ro, E) = I {1-exp (_ Rf0 ds = 1 -(Ro, E) (3.27)
T2~ ~ 0R Id, =I/ RE

If in addition the incoming Ro-pairs are also in equilibrium with respect to E so that p- (Ro, E) =
p- (Ro). The E-averaged or macroscopic probability is then,

- _ o_ P n+(Ro)
-= e-e derp~pA(Ro, E) = I- (Ro) (3.28)7rp..--(Ro)

Although the microscopic absorption probability (3.25) satisfies the rule (3.13) for decomposition
into probabilities for individual A and B collisions with the gas, the trajectory p and energy E-averaged
probabilities (3.27) and (3.28) do not satisfy this decomposition. That is,

pA(Ro, \; E) A 1 - (1 - P1)(I - P2) = P, + P2 - PIP2 (3.29)

where P, = PA(Ro, AA;E) and P2 = PA(Ro, AB; E). The equality has always been tacitly assumed
in previous macroscopic treatments' s - 15 . The breakdown is directly apparent from comparison of the
corresponding expr ssions derived explicitly for straight-line trajectories (E > V(R) for weak interactions).
Here, the Thomson straight-line (E, p) microscopic probability' is

PSAL(Ro; A; E -- oo, p) = 1 - exp{-2(Ro - p2)"//A} (3.30)

141with p-average' 4

PsAL (X; E - oo) = PSL(X) = 1 - -[1 - e- 2 X(1 + 2X)]; X = Ro/A (3.31)

which does not rigorously satisfy the decomposition rule (3.13). The decomposition (3.13) however is satisified
numerically fairly closely. While the Thomson microscopic probability (3.30) depends on L (via p), the L2-
average (3.31) is independent of E since E > V(R). The Thomson distributions within R0 are therefore
in E-equilibrium but not in L2 - equilibrium. The distributions which yield (3.25) are in general not in
(E, L2)-equilibrium.

For ion-neutral (hard-sphere) collisions with constant (speed independent) path length A, = A then
(3.25) reduces to,

PA(Ro, E, L2) = I - exp [-t(Ro, E, L2 )/A] (3.32)

where £ is the length of the segment of the (E, L')-trajectory enclosed by the sphere. For (ion-induced
dipole) collisions at constant frequency v, = v then

PA (RO, E, L2 ) = 1 - exp (-vT) (3.33)

where T is the transit time. Figure 1(a,b) illustrate the variation with X = Ro/A of the p2 and (p2, E)-
averaged values (3.27) and (3.28) of the microscopic probability (3.32) associated with ion-ion recombination
under Coulombic attraction V(R) = -e 2/R = -(ReiR)kT within a characteristic radius Ro = 0.408R, (cf.
§4.4 and ref. 4). Various analytical expressions for the microscopic segment length £ of the (E. L)-trajectory
have been derived in Appendix B (cf. (B6), (B9), (B15) and (B19)), together with corresponding L2 or p2

averages (B31) for general interactions V(R).
As E increases, the p -averaged probability (3.27) decreases monotonically (see Fig. 1) from the parabolic

(E < V(R)) envelope,

10



pA (X = Ro/A, E--+ 0) = 2 j [y/..j-]X ' ex (-2X(I _..Y2)i/2) y dy, (3.34)1

obtained from (B15b) for £ in (3.32) with (B22), to the straight line (E > V(R)) envelope (3.31). This
monotonic decrease between the two limiting envelopes essentially arises from the decrease of the p2-averaged
segment £(E, p; RO) of the enclosed trajectory from 2R 0 (cf. B23) for parabolic motion (cf. B23) to !Ro
for rectilinear motion. The envelopes increase initially with density N - A-' as the collision probabilities

2Ro/A and 1Ro/A in the parabolic and straight lEe limits, respectively. For intermediate energies E the
gradients are confined to within these limits (cf. Fig. la, inset). Fig. (1b) illustrates that the E-averaged
probability (3.28) is graphically indistinquishable (to within three significant figures) from PA(Ro, E = kT)
and is much closer to the parabolic limit (3.34), than to the straight-line limit (3.31).

The use of (B19) for C in (3.27) is universal in that the variation of PA(R 0 , E) with Ro at a fixed gas
density N, in addition to the above variation with N at a fixed Ro, can be illustrated also by Fig. 1 simply
by regarding the selected values of the normalized energy as values of c' = roe, and the absissa X as linear
in Ro. As Ro = roR, increases from zero, pA follows for all e the initial increase of the e' = 0 parabolic
envelope and eventually falls onto the straight-line envelope. The Ro-variation of P is shown in Fig. (2a) for
E = kT at one density (f = R,/A = 1) and in Fig. (2b) at several densities ranging from high to low.

There are as yet no analytical results for the averaged probabilities (3.27) for PA(Ro, E) and (3.28)
for pA(Ro) for general V(R), not even for the Coulomb interaction. Figs. (la,b) are based on numerical
p2-integrations over Elliptic Integrals (Appendix B). New analytical expressions now will be developed for
general V(R) for the following two cases: (a) The low-gas density limit (when pA _+ C/A,) in §4.1 and (b)
The case of pairs in L2-equilibrium (§6.1).

4. Low Density Limit: Classical Analytical Rates and Probabilities Under Exact (A-B)
Trajectories

The association probability (3.11) tends, as N -. 0 ie. as A,/Re --* oo, where R, is a characteristic

length given by the outermost root of V(R,) J= kT, to

DA 2) R.0 ds,p (RoE,,Lt (4.1)

which is linear in N. The transport form (3.16) of the classical rate then tends to,

aLou'NA9NE = f dE,R dL, [47rRoii' (Ro, E,,L2)VR] d-- (4.2)

which provides the required linear increase with N. Since the collision frequency,

_(R) = v,(R) = [2(E, - V(R))/MAB 1i/i (4.3)
A, A,

is already linear in N via A,, the low-density limit of the colhsional form is obtained from (3.2) by simply
setting n,(R) = i,(R), the zero-order approximation for all dissociated pairs, to give the low density N linear

limit,

CkawAgB = dE, f dL, f [47rR 2 i(R,E,,L,2)](it/A,)dR (4.4)
f o 0 R

which is identical with (4.2) since dt = dR/VR = ds,/v,. Since the one-way equilibrium flux,

2 47r RNATB exp(-E,/kT) (4.5)

47rRN7,-(R,E,,L )VR I= (2xMABkT) 3 / 2

across a sphere of radius R is independent of R and L, and since
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L = (2mE,)p2  (4.6)

in terms of the impact parameter p, then (4.2) is also

=,T [ 8'']1/ E6 - d1 [2p dp R, (-47

I.IrMAJJ J o R, A,

where c = E,/kT is the normalized energy. The maximum impact parameter P0 accessible for formation of
the RO-complexes at energy E, is given by,

2= Rp/(2mE) = R~ (1 _ V(Ro) (4.8)

Even when A, is independent of R and p, (4.7) involves knowledge of the length £(E, p) of the enclosed
trajectory as a function of E and p. For pure Coulombic attraction £(E, p) can be provided (Appendix B) in
terms of incomplete Elliptic Integrals of the first and second kind, but the double (E, p)-integration remaining
in (4.7) appears intractable. A more elegant approach is based on the recognition that the innermost double
integral of (4.7) is simply,

27r pdp J ds, = 47r R2[- 1 )]d (4.9)

This identity is proven directly in Appendix B (B32-B36), but follows most conveniently by reversing the
order of the ( r,', R)-integrations in the collisional form (4.4) of the rate. Upon assuming A, is independent
only of L,, then (4.4) gives

- - ro° or& fR"r (R)

aLowNAN dE, 47rR v, (dR/A,) o ;i,(R, E,, L 2)dL,. (4.10)

The L2-integrated equilibrium distribution here is then the standard Maxwell-Boltzmann distribution,

2 FE, "-_'(R)]1/:

ii,(R, E,)dE, = - kT J NANB exp(-E,/kT)d(E,/kT) (4.11)

such that

R,(R,E,)v, dE, = -8kT 1/2 r1- 1"A -Bee' dc, (4.12)
IWMA B I E I

with the result that (4.10) then reduces to

row= 8kT 11/2fc e'd PRO(E.)4r2 1" VR) dR (.3
t7rMAB 0  Jo I E, I A,(R,E,)' (4.13)

Comparison with the transport form (4.7) provides the valuable relation (4.9) valid for all (curved)
trajectories under general V(R) when the radius Ro is zndependeun of L,, but not necessarily of E,. When
A, and Ro are both independent of c then integration of (4.13) over e yields,

Cou, = K A) 1  4R' [ - L ] dR/A(R) (4.14)

Both (4.13) and (4.14) are exact (new) classical results for all trajectories under general V(R) valid when
the path length A, is or is not dependent of E,, respectively. The customary classical (Thomson straight-line)
result follows from the direct use of rectilinear paths in (4.7) or by setting E, > 1(R) in (4.13).
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4.1 Averaged Association Probabilties

The rate (3.18) may also be written as,

QLowNANB = j [4] (RoE)v(Ro)47rR0] PA(E,;Ro)dE, (4.15)

where P A(E, Ro), the microscopic probability (4.1) averaged over p (or L2), is the probability for association
of an equilibrium number of Ei-pairs contracting across Ro. By comparison with (4.12) and (4.13), the
probability at low gas density is given exactly by,

PA .,- -o 1 I RO(E.) 47R21 V(R) 1 dR (-6
ipov o - i A(R,E,) (4.16)

where p2 is given by (4.8). Since the E,-averaged flux

, (i(Ro, E)vi(Ro)4rRO] dE, =Wp,,GZ.J(417

where

2 V(Ro)
p.'. = R kT(4.18)

and where r is the mean relative speed (8kT/WMAB)1 12 , then (4.15) reduces simply to,

C -kL0,VANB = 7rP 2 .oTpA(Ro), (4.19)

where pA is the (E,, p)-averaged of the microscopic probability (3.28) given exactly by,
pA I Ru rR

PA(Ro) = ;p2 °  4 R 1 _ LdR/A(R) (4.20)
...fo [ kTJI

when Ro and A, are assumed independent of E,, The probability (4.16) and its E,-average (4.20) hold for any
curved trajectory under V(R). Expressions (4.16) and (4.20) are new analytical results for the probabilities
under general V(R).

4.2 Ion-Ion Recombination Under Coulombic Attraction:

For hyperbolic motion under Coulombic attraction V(R) - -e 2/R, the E,-microscopic probability
(4.16) reduces to,

A(E,,Ro) 4 Ro(E,) 3V(Ro)
(, 2 T, / (E, _)A)E, )

where both Ro and A, may be functions of E,. The macroscopic probability (4.20) is,

pA( 4Ro - 3 V(Ro)]/ [1 - (Ro) (4.22)

for constant R0 and A. The rate (4.14) or (4.19) is exactly,

CkLou,(Ro) rp2  PA(Ro) = 7rR 1 3 Ro)] kT (4.23)

for Coulomb attraction. This is appropriate for termolecular ion-ion recombination,

A+ + B- + M - AB + M (4.24)

in a low density gas M. For straight-line trajectories, Thomson obtained the rate,
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aT = wR P (Ro) (4.25)

where the Thomson (straight-line) probability is

4 Ro (4.26)

The corresponding probability (4.22) and cross section (rp', ) for the correct hyperbolic trajectory
are greater than the corresponding straight-line Thomson probability PT and cross section irRo by the
enhancement factors,

)/( 1 T R), (4.27a)

and

F, P;,.+/Ro = + , (4.27b)

respectively, where Re = e2 /kT is the natural unit of length. The probability factor F. remains bounded,
increasing from 1 for large Ro > R, to 1.5 in the limit of small R0 < R,. The focusing factor F, is unlimited
increasing from I to R,/Ro over the same range of Ro. The two factors however combine to give the amplified
ratio,

3L/aT 1+ 3R, Ro>R, (4.28)OtLaT = +2 Ro] 1.5(R,/Ro) Ro < R,

For typical Ro ; R,/2 characteristic 4 of ion-ion recombination this trajectory-correction for a is quite large
(-4).

Consideration of the inner integral of (4.7) in isolation presumedly hindered previous efforts to obtain
the correct generalization of Thomson's straight-line result (4.26) to actual hyperbolic trajectories. It can be
seen however that the cross section focusing factor F, to the cross section is the main correction. Natanson's
result"5 ,

QN= Wp rPA(R o) (4.29)

which accounts for F, but retains the Thomson straight-line association probability (4.26) therefore remains
quite accurate by being lower than the correct rate (4.23) by the F1,-correction of between I and 1.5.

4.3 Electron-Ion Recombination

For termolecular recombination electron-ion recombination,

e- + A+ + B -- A + B, (4.30)

the kinetic energy of the electron of mass m changes by an amount (T, - Tf) = (2m/M)T, after an elastic
(low-energy, isotropic) collision with the gas atom B of mass M. The change in internal energy E, of the
(e- - A) pair is E, - Ej = T, - T = (2m/M)[E, - V(R)]. Hence the pair is bound (El < 0) provided"8 ,

E,<2m e2  e2
2T = 6 -- = En (4.31)

where En rather than o, is now the upper limit to E, in (4.13).
On rearranging the order of integrations to reflect this R-dependent limit to E,, the rate (4.13) for

constant A, is then,

[ M8T ] /2f 47rR 2dR]6RI/  + R,-cEe- dc (4.32)
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which, with the aid of e - (6 R/) z 1 - bR,/R for small 6 = (2m/M), yields,

= m RoR, [ 8kT ]1/2
2A [ rMAB (4.33)

where R, = e2/kT. When R0 = !R, the Thomson radius, this classical rate a4 agrees exactly with
Pitaevskii's rate1" derived from a Fokker- Planck analysis of diffusion in energy space. A previous classical
treatment16 of (4.30) established the important result that a' varies linearly with Ro (as above) rather
than R3 as in (4.23) for ion-ion recombination (4.24). The formulation'" adopted however a less rigorous
weighting procedure which differed from (4.13) by a factor of 2/3 (in the inner integral) and which therefore
resulted in a rate lap rather than ap as found here.

The main difficulty in applying (4.23) and (4.33) to the collisional recombination processes (4.24) and
(4.30) is that the trapping radius Ro is uncertain. The rates increase without limit as R3 and Ro for each case,
respectively. The radius may be assigned de-facto by comparison with results4 of more elaborate theories
based on accurate numerical solution of the full Collisional Input-Output Master Equation. It would however
be advantageous if a classical treatment were formulated where Ro appears as a variational parameter. Such
a treatment is now developed in the following section.

4.4 Classical Variational Treatment

Let the bound level V(Ro) separate the reaction zone from the product zone. The one-way rate across
this transition state from (2.1) with E = V(Ro) is,

av(Ro)NANB = dE,] dLr J n,(R)v¢(R)dR (4.34)

V(R0 ) o"

where the frequency of collisional transitions across the boundary is

,V(Ro) L  2 (4.35)P,(R, Ro) = v(R) 0dE! f v,!R~~

and where R+ is the apocenter for bounded motion (0 > E, >_ V(R)) and is Ro for dissociated pairs.
The contribution ac to (4.34) from the continuum states is given by (4.13) with v, replaced by v and is
supplemented by the additional contribution aB from the bound states between 0 and V(Ro) to give,

aV = QC + aB (4.36)

where,

(XB "- dE, I [4rR 2n,(R, t,)v,] R (4.37)
f(Ro) fo

which with the aid of (4.12) for bound states reduces to

aB(Eo) = F 0 E eP(c) de J 47R IV(R) I 1 (4.38)f o " oE , 7 1
where p(c) = n,/a,, (o = .- V(Ro)/kT and A,'(co) = v'/v, is in principle a function of eo. At low gas densities
p is independent of R due to R-equilibrium.

For Coulomb attraction and constant A,, then the contribution to (4.34) from the continuum states is,

a4(Ro) = - FrRo7 (I + o ,c = R,/Ro (4.39)

as before in (4.23). When p(e) = 1 and the contribution from bound levels is,
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aB(Ro) = 3rR ([I + 2e61 eo + 2 1) (4.40)

The summed rate (4.36) is therefore

- Tv(Ro) = 4 2.T [ exp(-V(Ro)/kT) (4.41)

as a function of R0, or is

av(Eo)= irR T (4.42)

when expressed as a function of the binding energy co = e2 /(RokT) of the transition level. Since upward
transitions past this level V(Ro) are neglected by (4.41) and since n, is set equal to uij which is an upper
limit for the distribution of bound levels in the range 0 > E, V(Ro), the rate (4.41) is therefore an upper
limit. On assuming that the variation of A'(eo) in (4.42) with co is much slower than the remaining eo-
dependence, (4.42) displays a minimum at c = V6 which corresponds to R; = 0.408R,. This level e0 then
acts as a bottleneck to the recombination as in the bottleneck method of Byron et al. This value compares
very favorably with exact assignment of R0 (cf. Fig. 2 of reference 4).

The bound levels between V(Ro) - 2.45kT and the dissociated limit are in general not in energy
equilibrium as assumed in (4.40) and also in the original bottleneck method'8 . On setting a trial (variational)
non-equilibrium distribution,

p(e) = f exp(-C/eo) (4.43)

which is physically realistic4 , in (4.38) then (4.34) yields,

4 sF [1I+ I + (7eo - 3) - (2d - co - 5) exp (o - 1)] (4.44)3 A, c +2 2c0(f0 - 1)s
which displays a minimum at c; = 2.55 which corresponds to R; = 0.392R,. The choice of R; is therefore
rather insensitive to p(c). The ratios of (4.42) and (4.44) to !irR,(U/A') are however 1.75 and 1.56,
respectively.

Since A, = v,/v, is in general different from the mean path A, for production of bound from dissociated
pairs, and is in general unknown, the present strategy is to assign the unknown radius Ro in §4.2 and §4.3
as the above variationally determined R;. Hence (4.23) yields,

QL(Ro) = 0.3178 4 rR 3 (4.45)
3 eA

This result is only within a factor of 2 higher than previous numerical results4 of the exact treatment
in which the quasi-steady state solutions (nf of a collisional input-output integral equation for bound-pairs
Ef is used in equation (2.11) of §2) over a wide range (0.1 < a < 1) of mass parameters,

a = Mg/(2M, + Mg) (4.46)

for recombination of ions of equal mass Al, in a gas of mass M9 .
It is also interesting to note that agreement of (4.45) with the Thomson straight-line rate-equation (4.25)

with Ro = Re but with V set equal to the customary RMS value of 1.0854 V,

4 3 V
OfT = 0.321643rR, (4.47)

must be regarded as fortuitous in that the Coulomb focusing factor of 4.676 (neglected in (4.45)) offsets
the considerable reduction (Ro/RT) 3 

- 0.23 of the reaction volume. It is also interesting to note that the
variational value Ro = 0.408R, agrees closely with the value RN = 0.4 17 Re in Natanson's rate,
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aN = irRNV[1 V,(RN)]pA(R) (4.48)

which differs from (4.19) only in the use in PT of Thomson's straight- line probability (4.26) rather than
the exact probability (4.22) associated with hyperbolic orbits.

5. Angular-Momentum Integration: L2-Equilibrium, (R. E)-Nonequilibrium

5.1 Master Equations

Integration of the basic set (2.11) of Master Equations for n (R, E,, L') over the full range 0 < L 2 <

R 2p, = 2mR2 [E, - V(R)] - L ,(R) of L, accessible for given R and E, is facilitated by Leibnitz's rule
which provides,

o R2 R 2  R 2 OR ]

2 ) OL2 ,1
nt(R, E., L..) m I (5.1)

for differentiation with respect to R of an integral with R-dependent limits. The distribution n (R, E,, L2j
in (5.1) is evaluated for that maximum angular momentum L (R) - R2p (R) associated with the (E,, LM,)-
orbit which just reaches R at either turning point Rt. Since contracting pairs n- are transformed into
expanding pairs n+ at the pericenter and expanding n+ pairs are transformed into contracting pairs at the
apocenter, the R-space must be divided into two Regions I and II which exclusively contain the pericenters
R- and the apocenters R+ , respectively for a given E, and all accessible L,. In Region I sources of
n (R-) originate from n,- (R,'), while in Region IX sources of n- (R,+ ) originate from n+ (R+). The effective
interaction (2.2) associated with L', is,

L2
V., (R) - V(R) + 2M24R (5.2)

Region I which contains the pericenters of all L2-orbits with a given E, has range R-0 < R < Rb and Region
II which contains the apocenters is Rb < R < R+ where the boundary radius Rb is the radius of the circular
orbit given by the minimum of V,, ie. by the zero of

dVm dV 2(E, - 1) 1 1 dL, (5.3)
dR =dR R 2M- ABR 2 dR

and R' are the turning points associated with the most penetrating L, = 0 orbit. Thus Rb = e2 /2 E,I
for a bound orbit under Coulombic attraction. Region II does not exist for dissociated pairs. The boundary
conditions (2.12) and (2.13) can therefore be incorporated into (5.1) by setting the distribution evaluated at
the turning points to be,

n,(R,E,, L,) = { n- (R, E,, R 2p2); Region I (dVm,d/dR < 0) (54)
n, M ~~I n,+(R, Et, R 2p,2) Region II (dV .../dR > 0)(54

since n- is the precursor (source) of n+ in the pericenter Region I and n+ is the precursor of n- in the
apocenter Region II when it exists. 7ntegration of (2.10) with the aid of (5.1) and (5.4) therefore yields,

1 [ 2 ,±] = ± K 2 0CE /L2. I L2 ±4[4 (R) - p± (R)] C -'(R) (5.5)14 0 [a R , I : nT2 R I OR j V(R) Jo Jo If

where Cf (R) = iivq(R) is the one-way equilibrium collisional rate and where,
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R2 P'

j,(R) z- j:'(R, El) R -(R, Ej, L2) I vR dL 2 (5.6)

is the current per unit dR dE, across the R-sphere.
Addition of the two equations in (5.5) eliminates n, and shows that the E,-microscopic net current

J,(R) = J(R,E,) = [j,(R) - j,(R)] (5.7)

across R satisfies the microscopic continuity equation,

[R (R)] = - d dL °  dLS [p.(R) - pi(R)] C11(R) (5.8)T2 aR I(R) f

in general. The net effect on the net current (5.7) of the conversions at the turning points are null. For
(Ei, L2)-equilibrium, p,(R) = pj(R) = p(R) and (5.8) then implies constant flux 4rR2 J,(R) across the
R-sphere.

L-Equilibrium: For equilibrium in L,, then

2) ii(R, E,, L,2)
n,(R, E,, L,) [ii(R, E, n, (RE,) (5.9)

which is (Appendix A),

ni (R, E,,L?) - 2R2') n (R,E,) (5.10)

where p, and PR are the relative and radial momenta, and where the L2-integrated distribution is

ni(R, E,) = j ,(R, E,, L 2)dL ,  (5.11)

The normalized distribution p,(R, E,, L) of (2.7) is then independent of L2. The current (5.6) is then,

j:(R,E,) = In'(R,E,)v, = (L2,)n' (R,E,, L.2) I V I. (5.12)

Under L2-equilibrium (5.5) therefore reduces to the set,

R2 T [R2j,±(R, E,)] "L j, (:R, E) + [p± (R) - p,±(R)] C ±(R)dE,, R < R, (5.13)

for R in Region I (where aL2,/8R > 0), and to,

1 82 8L2  V()rp(R],,(ld:---R2j,(R,E,)] = 1:F + J+(R, E,) + f P) [p)(R)- (R)]C (R)dEj, R> Rb (5.14)

for R in Region II (where 8L2,/R < 0). The one-way equilibrium rate (per unit dE,dE1 ) for E, -, f
collisional transitions is,

C,(R)= J dLZ J i/,#(E,, L,; E1 , L ; R)dLl = ii±(R, E,)v, (E., E1 , R) (5.15)

Note that dL 2 (R) at constant E, in (5.13) is simply the increase (if positive) or decrease (if negative) in the
number of orbits (states) LM, with their turning points within the range between R and R + dR. In Region
I which contains the pericenters, this number increases as R is increased and in Region II which contains
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the apocenters this number decreases as R increases. Thus dL/2 n 2dL /Mn in (5.13) and (5.14) is the fractional

increase (or decrease) in the current j± (R, E,) across the R-sphere as R is increased to R + dR. Equation
(5.13) therefore incorporates directly the boundary conditions (2.12) and (2.13) by including the appropriate
source/sink terms. Contracting (-) pairs which disappear as (-) pairs reappear as sources of expanding
(+) pairs in the pericenter region. Equation (5.14) acknowledges that (+) pairs are sources of (-) pairs in
apocenter Region II. For Coulombic attraction, Region I comprises all R for E, _> 0 and 0 < R < Rb for
E, < 0 while Region II comprises the range Rb < R < 2Rb for E, < 0. The boundary radius Rb = e2/2 1 I
is the radius of the circular orbit of energy E,.

The net radial microscopic current,
1 1- (p+-p" , R)(.

J,(R) = J(R, E,)= (n+ - n7)v, = )..(p1 - p)v. = [p (R) - p[(R)] j,: (5.16)

satisfies the equation

I0aR[R j(R)] ] Ip. (R) - p,(R)) C,1 (R)dEf, (5.17)R2 MR VRJ(', (R)

since p, = (p! + p,-)/2 and C,1 = 2C: (R). The net effect of the geometrical (+) -- (-) conversions in
(5.13) and (5.14) to the net current J, is obviously null, in accord with (5.17).

The rate (2.1) can then be written in terms of the association probability

A(E,, Ro) = I_ n, (Rt, E,) = I p+(R) (5.18)

nR (R, E,) ,- (R)

in the transport representation as,

aNANB = lim j dE, 4rR2n-(R)!L] p'(R)PA(R) (5.19)
R-,.o o I S

where i labels E,-state quantities. In terms of the probability,

P,(R) = 1- ___- 1 - (R) (5.20)
n,, p,(R)

for subsequent collisional stabilization of Ej-pairs originally produced collisionally from a dissociated E,-pair,
the collisional representation of the rate is,

CaNANB = lim dE, f dR n,(R),,j (R)Pf(R)dE!  (5.21)
R- oo Jo JV(R)

In terms of the one-way equilibrium flux

4rRi j,(R, E,)= 4rR2 (ii:(R, E,)) = 47rR 2 L 2, [exp ( - E ,/kT) 3 (5.22)
2 2 M (21rMAvkT)' / 2]

per unit interval dE, across the R-sphere, then the source-sink terms of (5.13) and (5.14) are,

2[OLd'] , ) I j(R,E,) a (R2 (R, E,)) (5.23)
LM, [ OR Jl , 2 J,±(R, E,) OR

The set (5.13) and (5.14) then reduce to the follcwing equations in Region I and Region II, respectively.

~ RIjp(R)) :Fp,-(R)h (Ri) = IvR p(R) - p (R)] C:(R)dE,. (5.24)

y2 - (Ri p (R)) :Fp(R)I2lR(R2~ J' [p,± R) -p (R)] C-±f(R)dE,. (5.25)
S 1R V (R)
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When (-) and (+) pairs are simultaneously in E,-equilbrium then p, (R) = pj (R) = p (R), and the
collisional RHS of (5.24) and (5.25) vanishes. The LHS then predicts constant flux 47rR 2 j, [p+ (R) - p- (R)]
for the exterior R > Ro region. The above set (5.24) and (5.25) for L2-equilibrium is identical with that
deduced previously 19 from conservation considerations.

Classical solutions are now developed in §6 under L2-equilibrium in the interior (R < Ro) region.
Dissociated pairs belong only to pericenter Region II and classical (full absorption) solutions to (5.24) will
be provided in §6. Bound pairs with energy E < Eb = V(R) + (1/2)R dV/dR and R > Rb, the zero of (5.3),
are in Region II governed by (5.25), which is also solved in §6.2 in the absorption limit.

6. L2-Equilibrium: Analytical Expressions for Classical Association Rates and
Probabilities for a General Interaction V(R)

Assume as in §3.1 that PfS, the probability (5.20) for stabilization of the bound state f collisionally
produced from dissociated state i is unity for R < Ro and is zero for R > R0 . The rate (5.21) in the
collisional representation is then,

aNANB = j dE, j n,(R)v,(R)dR (6.1)

where,

.(R)= vz,(R)dEj (6.2)V(R)

is the frequency for collisional production of bound levels.

6.1 Pericenter Region I (E > E = 1(R) + ; dvR < Rb for E > 0 and all R): Microscopic
Distribution of Dissociated and Bound Pairs.

The absorption form of (5.24) is then,

= 2v(R) p'(R) 2 p (R) (6.3)

where for small R,

0 
00

v,(R) = , v(R)dEj ;t vjf(R)dEj (6.4)
J (R) J (R)

is close to the total collision frequency to all levels. On integrating (6.3) between R and Ro, the solution is,

p (R) = p- (Ro) exp (2 f ) P (Ro)Ps (Ro, R), (6.5)

which in effect. defines P; (Ro, R), the probability of survival against collision of (-) pairs from R0 to R. By
comparison with (3.5), the main consequence of L,-equilibrium on the distribution is to simply replace the
radial speed VR by its L2-average of iv,.

The outgoing distribution p+ satisfies (5.24) which reduces in the collisional absorption limit to,

a [R2 p2p+ 2 ( 2p2pfl = a6262]
R PP , ++ RR [R p-(R)

which is,

R =22p7 e2R/,1 - (R 2p 2) p- (R)e2 R/A. (6.6b)
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The above equations (6.3) and (6.6) also follow directly from Li-integration of the corresponding (E,, L?)-
equations (3.3) over all L,, use of Leibnitz's integration rule and setting p, (R, E. R2p2) = p, (R, E,) so as
to acknowledge conversion at pericenter R,.- The solution of (6.6b) can be written as,

(S) = p(R)w(R7)P,+(R,, S)dR (6.7)

for S in the range 0 < S < Ro of Region I. The physics of this result is that the source of outgoing pairs
are the incoming pairs which undergo conversion at each pericenter R- between R = 0 and S. The outgoing
pairs formed at R- then survive to S with probability

P+(R,-,S) =exp (2 S ). (6.8)

The fractional weight of incoming pairs with pericenters R,- within the interval dR, about R- is,

wj(R7)dRy = dL - d (R 2 p) (6.9)
L2  S2p 2

under L2 -equilibrium. Pairs with angular momentum Lmnax = Sp, have a relative orbit which just touches
the S-sphere at S which in turn encloses all the pericenters R[ between 0 and S.
The probability of association,

P (ERo) - 1- pi'(E,, Ro) (6.10)
p;(E,,Ro)'

within R0, with (6.5) and (6.7), yields

PA(E,, Ro) = 1 - , P;(Ro, RT)w- (R.)P (R-, Ro)dR-. (6.11)
Ro~po2

The physics of this result is that the incoming (-) pairs which arrive at the pericenter with probability
Pj (Ro, R-) and weight w,- (R,-) per unit dR- are converted at each R'" to outgoing (+) pairs which survive
to Ro with a probability PS+ (R,, Ro) With the above definitions of Ps+ and w- integration by parts then
yields,

pA1(E,, Ro) = 2fR 1 VYR)) exp [4(Ro - R)] dR/A,, (6.12)YERpo 0 E ~ )o [_ A,

where the maximum impact parameter po which has its pericenter on Ro is given by p = R2 [1 - V(Ro)/E,]
and where A, may depend on E,. In the limit of low gas densities Ro/A, - 0 and (6.12) reproduces the
previous low-density limit (4.16).

For energy independent A,, the macroscopic probability (3.28) with (6.12) yields,

p I Ro 2 [ _ V (R) - 4(Ro-R)/ X[ (6.13)
P'(Ro)-= rP fo 41rR[ I - ] e[(.13

Pma10 [ TJ[T]

Expressions (6.12) and (6.13) pertain to general interactions V(R) and are valid when the (E,, L 2) pairs with
R < Ro are in L2 equilibrium and in (E,, L,2)-equilibrium, respectively. The corresponding distributions
(6.5) and (6.7) at Ro associated with PA are not in R-equilibrium.

On recalling the original complexity entailed with the multidimensional integrations (3.23) and (3.24)
involving the microscopic distributions (3.5) and (3.6) and the probabilities (3.25), both expressions (6.12)
and (6.13) represent a significant algebraic reduction applicable to general V(R).

6.2 Apocenter Region HI (E < b= V(R)- 1 ±v-;R ~> Rb): Microsoi itiuino on2av dR, > :Mcoscopic Distribution of Bound

Pairs.
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Equation (5.25) reduces in the absorption limit to,

Op!R 2 -P! (6.14)

for pi+ and to

-R [R p2 p(R)exp(-2R/A)] = - I (R J )  pi (R) exp (-2R/A) (6.15)

for p,-. The solution of (6.15) subject to pre-assigned p,-(Ro) is,

p'(S) = p (R o, S ) + f p+(R+)w+ (R+)P-(R,+,S)dR +  (6.16)

for S in the range Rb < S < R0 . The first term on the RHS is the direct contribution from incoming Ro-pairs
which survive against collision to S with probability,

Ps (Ro, S) = exp -2 (6.17)

S"2 2_St2
and R p/S 2Ps is the fractional number of L-states accessible under L -equilibrium. The second term is the
contribution from apocenter (+) --* (-) conversions at R+ which survive against collision back to S < R+
with probability P;. The fractional weight of apocenter pairs within interval dR+ is,

2d (RpP 2 )
wS(R+)dR! = d (S) (6.18)

The solution of (6.14) subject to p+ (Rb) at the boundary between Regions I and II is,

pS+ (R+ ) = p+(Rb)P+(Rb, R+), RegionII (6.19)

where (6.8) provides the probability for survival of outgoing pairs to R+ in the range Rb < R + < R0 . The
distribution p+ at Rb is obtained from the pericenter Region I solution (6.7) which gives,

p+ (Rb) = p7 (Rb) P (Rb, R-)w- (R-)P+ (R7, Rb)dR-, (6.20)

which is by now self explanatory. On using (6.16) for p- (Rb) then in terms of the assigned p,- (Ro),

+_+_+ + - Rb)dR

p+(R+) = j ° RP-(Ro)Ps(RoRb) + pJ(R,)%(R,)P;(R, ,

{ P (Rb, R')w I (R I)P(R , Rb)dR b(R,, R+), RegionII (6.21)

The notation adopted here facilitates the recognition of the various sequences involved in the generation
of p+ from p,- in Region II. It also illustrates quite dramatically that p+ is the solution of an integral
equation in R-space. The use of the absorption limit adopted in this section §6 essentially eliminates the
integral equation in E-space involved with the original Master set of equations (5.24) and (5.25). The full
solution of the Master equations involves integral equations in E and R space, which are difficult to solve
numerically.

The distribution p,- (R) in Region I which originates from p,- (Ro) in Region II is,

p7(R) = p- (Rb)P; (Rb, R); RegionI (6.22)
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6.3 Application: Coulomb Association Probabilities for Pericenter Region I.

Dissociated pairs with all R are all in Region I. For Coulombic attraction V(R) = -e'/R, and constant
free-path-length A, (6.12) yields,

PA(RE) = -.- [1 - C 4 X) ( [±2 _ X2] I) + 4X] (6.23)

where the parameters

X = Ro/A; X(E) = po(c)/Ro (6.24)

are related by

[(Ro',X)= [x2 (6.25)

in terms of the natural units R, e kT and c = E/kT of length and energy.
The low-energy parabolic (E 0 0) limit to (6.12) yields

P - --o { 2Ro/A, X -, 0 (6.26)
"- 1, x 00

and the high-energy rectilinear (E -- oo) limit is,

PA (Ro, E -, oo) = I - I [41 -X R, X 0 o (6.27)

The initial gradients of pA are proportional to the enclosed parabolic and chord segments 2R 0 and 1Ro,
respectively. The above limits (6.26) and (6.27) are the envelopes to the family of plots of (6.23) versus gas
denisty for various energies e. The E-integrated probability (6.13) is,

PA(Ro) = pA(Ro, kT) (6.28)

and is identical with the probability (6.23) evaluated at e = 1. The above probabilities derived under the
assumption of L2-equilibrium will not in general agree with the corresponding results (3.27), (3.31) and
(3.34) based on non-equilibrium distributions (3.5) and (3.6), except in the low density (X -- 0) limit when
the gradients of all the envelopes are equal to 2X and 1X, respectively. Figure 4 provides the X-variation
of the E-averaged envelopes (6.26) and (6.27), and probabilities (6.23) for various c. The probabilities are in
general lower than the corresponding probabilities of fig. (la) associated with L2-nonequiibrium since not
all collisions result in absorption (cf. fig. 5).

All collisions with (E,, L,)-pairs are not expected to result in stabilized recombination, eg. those
involving only angular-momentum redistributions in (E,, L2 

--* E,, L2) transitions can be excluded. These
collisions which involve only angular momeutum changes are expected to promote equilibrium in L2 rather
than absorption. In this sense therefore the classical (absorption) solutions (6.12) and (6.13) associated with
L2-equilibrium represent a more natural outcome than those (3.5) and (3.6) associated with full absorption
of all L2 levels upon collision. The probabilities (6.12) or (6.23) and (6.13) or (6.28) are therefore expected
to provide a representation more physically correct than (3.27) and (3.31) ie. the lower curve of fig. 5 is to
be preferred.

7. Solution as a Function of Gas Density: Reaction and Transport Rates

The rate (2.14) is exactly,

aANg B = HM dE, dL, [4rR~o (Ro)va]p (Ro) A(Ro) (7.1)
ROoo -- fO
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where the microscopic distributions p, implicit in pA (= 1 - /p) are solutions of the transport-collisional
Master Equations (2.20) for general non-equilibrium in (L', Ei, R) coordinates, or of (5.24) and (5.25) for
non-equilibrium only in E, and R. This procedure provides in principle the f;,11 variation of a with gas density
N.

The pairs with large R are generally in (E, L2) equilibrium but not in R eqi!'brium. Further insight
and development may however be achieved by address to the macroscopic continuity equation. The net
microscopic current J(R, E, L ) and the net L -integrated current J(R, E,) satisfy microscopic equations
of continuity (2.15b) and (5.8), respectively. On integrating (5.8) which holds quite generally for non-
equilibrium in R, E, and L , over all E, accessible at a given R and use of Leibnitz's rule,

1 0 [R 2 J(R, E,)] EdE, 28 R dE I 9 [R2 J(R,,E, = V(R

j 1(R) F R 9R J J(R) T R

= 0 (7.2)

is zero due to the null effect of all the collisional redistribution terms,

I dE, / dE! [pj(R) - p,(R)] C,1 (R) = 0. (7.3)
V(R) J (R)

Since the net current J(R,, E, = V(R)) = (n+ - n,-)v, vanishes at the outermost turning point R,
given by E, = V(R), (7.2) provides the macroscopic continuity equation,

V .J(R) = 0 (7.4)

which is always valid for the net macroscopic radial current

J(R) - J,(R)dE, = 0 dE [n+(R, E,) - n-(R, E,)] 2' (7.5)
(R) "(R)2

j dE, j dL2 [n+ (R, E,. L 2) - n- (R, E,, L2)] y,, (7.6)
,( R) f

- dE, dL, [p+(R) - p-(R)](iVR). (7.7)
V(R) 0o

Assumption: For large R > R0 , the pairs are in (E,, L2)-equilibrium ie. p (R) = p+ (R) irrespective of i.
Hence (7.7) yields,

J1 (R) = j+(R) - f-(R) = -NA9NB exp(-V(R)/kT) [p+(R) - p- (R)J, R > Ro (7.8)
4

when the bound levels in the range [0 - V(R)] are included in the integration, or

J2 (R) = R l F Lp (R+(R)- p(R)j (7.9)

when they are excluded. For V < kT, then J1 -- J2. Under steady-state conditions

41rR 2 J(R > Ro)/NANB = ,ap(R - co) = 7rR2 I ( pA(Ro)p-(Ro) (7.10)

where p(R) is the non-equilibrium normalized distribution n(R)/fi(R) of expanding and contracting pairs
and is relaied to p- (R) by

p(R) = [p+2(R) + p- = [1- P"(R) p- (R) (7.11)
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when PA(Ro) is the macroscopic probability for association within R. Since the incoming pairs are generated
at infinity with a Boltzmann distribution p- (R --+ oo) --+ 1 and p(R -- oo) --* 1 - P(oo). The summed
distribution p(oo) is therefore not in R-equilibrium. Also p- (oo) > p+ (oo) and a net inward current (7.8)
exists at infinity.

7.1 Non-Equilibrium p(R): The Transport Rate

The basic Master Equations (2.20) followed from (1.2) which was originally derived from a Boltzmann
equation in (R, p) phase space. In the absence of a sink at R, it was also showne from the same Boltzmann
equation that (7.5) the macroscopic current J can be represented by the standard diffusion-drift expression,

J(R) = -DVn(R) - [KVV(R)] n(R), R > Ro (7.12)

where n(R) is the non-equilibrium (A-B) pair distribution which is affected by the strength of sinks within
R < Ro. The macroscopic collisional coefficients D and K for relative diffusion and drift of A towards B
through a gas M are given respectively by D = DA + DB and K = KA + KB where DA,B and KA,B are the
diffusion coefficients and mobilities for the individual species A and B in M.. These coefficients at low field
strengths (as Coulombic at large R) are related by KkT = De or by Ke = DRe where Re is the natural
unit e2 /kT so that

J(R) [-V(R)/kT] L (7.13)

(RA -Dexp OR = 4,rR2

The solution of (7.13) between Ro and oo yields,

p(Ro) = p(oo) (1 - a/aTR(Ro)) (7.14)

where the transport rate,

aTR(Ro) = 47rD 00 exp(V(R)/kT)R 2 dR (7.15)

is the rate of production by diffusional-drift of Ro-pairs from pairs originally with infinite separation.
Once p(Ro) can be furnished from (7.1) in terms of a, then (7.14) can be solved for a.

7.2 The Reaction Rate

We now choose Ro in (7.1) to be finite, yet sufficiently large that no sinks exists outside R0 (eg.
Ro > 5(e 2 /kT) for a Coulomb interaction4 at low gas densities). Both (7.4) and (7.13) are then valid. The
effect of non-reactive collisions outside R0 will now be acknowledged via appropriate choice of p-(Ro) in
(7.1). The component species A and B are assumed to be in collisional equilibrium with their mutual field
V(R) at these large R > R0 . The kinetic energy gained from V(R) by the contracting pairs as R is decreased
is lost upon collision with the gas species M. Following each collision, the kinetic energy T at each R > Ro
is therefore reduced to the original kinetic energy E, = T. of generation of pairs with infinite R. Assuming
that the last collision suffered by the R,-pair occurs at (R, + A), where A is the macroscopic mean free path,
then the pre-collision kinetic energy of the R-pairs is,

T'(R) = Tw + [V(R + A) - IV(R)] (7.16)

which represents an increase of 6V(R) = [V(R + A) - V(R)] over its original thermal value T. resulting
from the previous collision. Prior to the next collision at R the internal energy is then,

E,(R) = T'(R) + V(R) = Too -, V(R + A). (7.17)

At low gas densities A -, oc, and E, of course remains conserved for all R > Ro while T increases
from T, = E, at infinity to [E, - V(R)] at R. The internal energy of pairs contracting at Ro is
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Ef = T - I V(Ro + A) I rather than Ei = T as it would be in the absence of diffusional-drift collisions
outside Ro.

The degradation of E, from its value at infinity therefore causes E, in (7.1) to be replaced by E,. Hence
(7.1) yields,

= aRN(Ro) [p(Ro)/p(oo)] (7.18)

=(ANB) f dEf dL2 [41rR2ii-(Ro)vR] PA(Ro) (7.19)
(Ro+ A) o

This defines the rate of reaction aRRN(Ro) within Ro which equals ce if full equilibrium, p(Ro) = 1, were
to exist. On inserting (7.18) into (7.13) then the overall rate is,

a = IRN(Ro)aTR(Ro) (7.20)
aRN(Ro) + aTR(RO)"

This decomposition (7.20) of a into reaction and transport rates was known in recombination since
the macroscopic result of Natanson' s was recast 20 in that form (which also can be deduced directly from
Debye-Smoluchowski theory21 ). What is new here is the following expression to be used in (7.20) for the
reaction rate,

aRN(Ro) = P-(o) [a' N(Ro)p-(Ro) (7.21)

where the macroscopic equivalent (3.20) of the integral in (7.19) is,

aRN(Ro) = irp2  iexp(-V(Ro + A)/kT)PA(Ro) (7.22)

where,

P. 2 1 V(KRo) +V(Ro + A)]7.3
ax ,= =Ro U UT (7.23)

With the use of (7.11) in (7.21) then,

I pA(00)
aRN(Ro) 2 N(Ro) (7.24)

since p- (oo) - 1. Previous treatments had tacitly assumed that aRN in (7.20) was given by aj v the
microscopic rate (7.22)., The factor in (7.24) which essentially arises from the differences between the values
p-(Ro)/p-(oo) and p(Ro)/p(oo), tends to unity in the limits of low and high gas densities when pA - 0
and 1, respectively.

8. Summary

Basic sets of Coupled Collisional-Transport Mastf-r Equations have therefore been developed in this
paper for the microscopic distributions n+(R, E, L') of expanding (+) and contracting (-) pairs (A-B) in
a gas M of variable density with respect to their (A-B) internal separation R., internal (orbital) energy E
and orbital angular momentum L, as well as for the corresponding L2-averaged distributions n= (R, E).
Expressions have been introduced for the microscopic probability PA(R) for association of (E,, L2)-pairs
with separations < R and for the probability Pf, (R) of multicollisional stabilization of (Ej, L2)-pairs with
separation R formed collisionally from (E, L,)-pairs. The recombination rate has then been expressed in
the collisional form and the transport form which is more amenable to physical insight and to algebraic
development.

Each set has been solved exactly in closed analytical form in the (classical) limit of collisional
absorption where backward collisional couplings vy, are neglected. The corresponding probabilities PA(R)
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for association have also been determined. In particular the multidimensional integrations inherent in p A for
orbits under general V(R), including Coulombic attraction, have been reduced to new and simple analytical
results for association (a) at low gas density, and (b) at all gas densities for pairs which are maintained in
L2-equilibiium by collision.

A classical Variational treatment for which the highly excited bound pairs need not be in E-equilibrium
has also been introduced, in order to provide assignment to the reaction radius Ro adopted in the above
classical treatments.

Expression for the rate a as a function of gas density in terms of the reaction and transport rates
QRv and aTR, respectively , has been proposed. It differs from previous well known formula in the form
of the macroscopic reaction rate aRN. Finally, useful expressions for the microscopic path length in E, L -
Coulombic Orbit enclosed by a sphere of radius R and simple analytical expressions for the L2-averaged
enclosed length over all trajectories under a general V(R) have been derived in Appendix B.
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Appendix A: One-Way Equilibrium Microscopic Flux and Distributions

These distributions can be calculated directly21 from the relevant statistical formula 23 or from the simple
differentiation of action integrals24 . It is convenient here to summarize the key results. M is now the reduced
mass of the (A-B) pair, and with internal separation, energy and orbital angular momentum R, E and L,
respectively. E = ekT and L2 = 2MEp2 ; where p is the impact parameter for dissociated A-B pairs with
energy E, with radial speed VR = dRIdt and mean speed F = (8kT/rMAB) 1/ 2 .

1. (E, L)-Microscoptc Current and Flux:

:(R, E, L2 ) = ; (R, E, L2 )vR

47rR 2 1+ (R, E, L2 )dEdL2 = (2irMABkT)3 /2 exp(-E/kT)dEdL2

=Tee dc d(7rp2 )

2. E-Microscopic Current and Flux:

3'(R,E)=( = 2 vi±(R,E)

4rR 3 (R, E)dE = ye e deirR 1 ( E))

= irp 2 (R)Tce- dc

3. Macroscopzc Current and Flux:
The current is

f()J(R) (R, E)dE F I()kf(R) 4

for all bound and dissociated pairs, and is

cc l'(R) 1
3±(R) = ±(RE)dE= '1

for dissociated pairs. Respective fluxes are,
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4?R2 I (R) = rR 2 exp(-V(R)/kT)

4rrR 2 j(R) = 7rpm18 Y; pna x = R 2 1 -V"R

4. (E, L)-Mzcroscopic Distribution:

41rR 2 (R, E, L2 )dRdEdL 2 =(21rMAEkT)3 2 exp(-E/kT)dRdEdL2

5., E-Microscopic Distribution:

47rRi+(R, E)dRdE = 2f e-' d( L))dRV E)

= 47rR2 dR exp(-c) E -

= (47rR 2dR) [G ,B(eR) de]

where GMB is the one-way Maxwell-Boltzmann velocity distribution in above [ ].

6. Macroscopic Distribution:

ii:(R) = t(R,E)dE = exp(-V(R)/kT)

for available bound and dissociated pairs and,

n = (R) = ii± (R, E)dE

I 2exp(-V(R)/kT)I - [-I-,VX) - LX'/'exp(-V/kT)]}

for dissociated pairs, where the error or probability integral is,

xt-' 2 X1 2 X (2
f Vi2__o T r e (2k + 1)!!

in terms of X = V(R)/kT.

Appendix B. Microscopic Path Length £(E, p; Ro) of (E, p)-Coulombic Orbit Enclosed by
Sphere of Radius Ro and p-averaged Path Length for General V(R).

The enclosed length may be determined either from

= ]ds,= R 1 2 ( dR (B 1)
, , f, " dR J

which implies knowledge of the relevant orbit O(R), or from

£(EL;Ro) R2 = 2 dR = 2 YE - V(R)dR (B2)y LR , ) VE- V(R)- L2/2MR2'

where the pericenter R, is the root of the denominator. For a hyperbolic orbit under Coulomb attraction
V(R) = -e 2 /R, (B.2) reduces to,

R  2 f(R+)-a Ro+a V--
C=2 ( dR = 2 a2 dx, (B3)

J(,-i) V(R + a) 2 - a2C ( 2  r_ a'e d
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where the eccentricity e and semi-major axis a are given by,

2 = L 1p/a2; a = e2/2E. (B4)I ( 2 -mEa2)  +

The maximum impact parameter for the enclosed family of trajectories is given by,

PO(E) = Ro( ~) ( 5)

Integral (B3), with a singularity at the lower limit, may be evaluated numerically by standard integration
techniques or from the analytical expression,

£(E, L; Ro) = a2( 2 
- 1) F(O, k) - aeE(O, k) + (Ro + a) sin(O) (B6)

in terms of thr incomplete elliptic integcals F and E of the first and second kinds respectively, with angle €
and modulus k given by,

sin_2 (Ro + a)2 -aae2  (Ro + a)2 - (R, + Ia) - P2 /p (B7)
(Ro + a)2 - a =  (Ro + a)2 - a2

and

k = sina =1 2 a (B8)

respectively. The deflection angle V is (r - 2a). On eliminating E via (B4) then (B6) is,

£(E, p; Ro) = 2(p 2 + a2 )1/2 [k12F(O, k) - E(O, k)] + 2(p2 + a2)1/2 Sin (B9)

where,

k 12 = I - k2 = p 2/(p 2 + a2). (B10)

Since the pericenter R, = a(e - 1) satisfies

(R, + a)2 = p2 + a' (B11

from (B4), then (B9) is alternatively recast in terms of energy E and R, regarded as new independent
variables, as

£(E, R,; Ro) = 2(R, + a)[k'2F(Ok, k) - E(O, k)] + 2(Ro + a) sin O (B12)

where

k [2 = [(R, + a) 2 - al(13)
(R, + a)

2

For the limiting case of parabolic motion c - I(k - 1, k' 0), E -* 0 (a - oo) direct use of the orbit,

R(O) = 2R,/(1 + cos 0), R,(L) = L2 /,ne 2  (B814)

in (BI) or on setting E = 0 in (B2) yields,

£(E - 0, R,; Ro) = 2 [R/(R - R)1 /12 dR, (B15a)
1,1

12R, I tan I (r + 0o) + 2Rosin 10, (Bl5b)
4 2
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where 0o = 0(Ro). This is also the corresponding limit of (B12) where E(O, k) must be expanded to first
order in k'2, where F(O, 1) = In tan (7r + Go) and where,

sin 2 0 -. sin2 0o = 1 - R,/Ro, (B16)

such that 0o = 20o. For computational purposes the probability (3.11) with (B9) for £ is recast in the
dimensionless units,

pl = PPO; 11 Re

P- PPo; C, = - = Ero; X = Ro/A; R, = e2/kT (B17)
kT Ro

as,

pA(X, EI) = j [1 - exp(-C(X, e'; ')/)]dp 2 ; (B18)

with,

' ;P') =2X + 11/2 ( k) - (p 2 + a 2 )/ 2E(, k) + (1 + a 2)1/2 sin (Bi)

where,

a'2 = [4c'(c' + 1)]- ; sin2  = 1 - p'2 ; k2 = a 2 (p 2 + a 2)-1 . (B20)

The variation of this probability (B18) with the density parameter X (- gas density) and reduced energy
parameter C1 or ro is displayed in Fig. 1. Expression (B19) is univerisal in that it simultaneously provides
variation with gas density X and Ro (see Fig. 2).

Averaged Enclosed Length £(E; Ro) Over All Accessible Trajectories.

At low gas densities the p-averaged collision probability (3.27) for constant A is (L),/A where the average
enclosed length of all possible trajectory segments,

£(E; Ro) = (f.(E, p; Ro))p = j C(E, p; Ro)dp (B21)

enters into expression (4.7) for the low-density rate of ion-ion recombination. Direct use of (B9) in (B21)
appears cumbersome, except for the limiting case (E - 0, a --- oo, e ---+ 1) of parabolic motion. Then use of
the parabolic segment (B15b) in (B21) with,

dp' 2(R, + a)dR, dR,
po(E) = (Ro + a)2 - a2  Ro (B22)

in this parabolic limit. The po2-averaged value (B21) after elementary integration of each term of (B15b)
yields

£(E - 0; Ro) = (2 + 4 ) Ro = 2Ro (B23a)

which also follows from (B15a) by noting that,

2 . f R
£(E - 0, Ro)  dR dR Ro dR dR, = 2Ro (B23b)
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At high energies E > V(R), p0 -+ Ro and the p -average (B21) of £ = (Ro - po) 1 /2 is Ro. The enclosed
length (B21) (and hence (3.27)) will therefore decrease from 2Ro to !R 0 as E increases for all gas densities
(cf. gradient slopes of inset figure la).

For the case of electron-ion recombination the infinite limit to the energy E in (4.7) is replaced1" by
E,, = (2m/M)(e2/R) so that the low density rate (4.7) is,

a, -Ro dR, ds, e e- ' de(1 + Re/ERo), (B24)

where here c = E/kT. This reduces to first order in (m/M) to,

aL =2n2m e2 ]2foR d  °ds (B25)

which, for the low-energy parabolic motion involves,

, = 4Intan (7 +0o), (B26)

the average of 7 over each trajectory rather than the path length (B15). Hence (B25) reduces to

F 1e2 2

aL = 8,r ) Ro (B27)

for collisional electron-ion recombination, in exact agreement with the energy-diffusion result of Pitaevskii' 7

when R0 = !R, the Thomson radius.
For the general case of ion-ion recombination the averaged path length (121) is required but direct use

of (B9) appears prohibitive. On using (B11) however, for the transformation p - R_ at constant E, then

£C(E; Ro) = = 6, (R, + a)dPt] f(R, R,)dR (B28)
P oRo O p JO

where for a Coulomb interaction V(R),

f (R, R-,) =(R(R + a)2 - a2  (B29)

(R + a)2 - (R, + a)2

is the integrand of (B3) expressed in terms of R, rather than r. On interchanging the order of integrations,
then (B28) reduces to,

£(E; Ro) = p'] dR (R, + a).f(R, R,)dR,, (B30)

which is in a form amenable to elementary integration. Thus,

£(E;Ro) = 4Ro 1 2 3co)) (B31)

General V(R): The result (B31) above is but a particular case of the following result for general V(R).
On interchanging the order of integrations in (B21) with (B1) then

S; Ro 2 R9 p,(R) p 2 ,
(E;-Ro) = dR d ds, = - R (B32)Rp Po [dRJ

The trajectories which access R have impact parameters p in the range 0 < p < pn(R) where,
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p.2(R) =R2( I V(R)) (B33)

Since

[ p(R) (B34)

pdRJ(R)

from (B2), the inner integral of (B32) is simply 2p.2 so that,

4/Ro
£(E; Ro) = T2 jp 2 (R)dR, (B35)

to give

C(E; Ro) = R2(1 4 f R,/l j1 V(R) dR (B36)

as the p-averaged path length for general V(R). This valuable expression yields (B31) for Coulombic
attraction is applicable to all V(R) and agrees with equation (4.9) of text.
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Figure Captions

Figure la-b. (a) Probability PA(Ro, E; A), equation (3.27), for collision of an ion in a hyperbolic
(Coulomb) trajectory with the gas within a sphere of radius R0 = O.4Re as a function of reduced gas density
X = RO/A at various reduced Coulomb-orbit energies e = E/kT; (b) Dotted curve: E-averaged probability
PA(Ro; A), equation (3.28), and .PA(Ro, kT; A). Solid lines are parabolic (C = 0) and rectilinear (6 -* oo)
envelopes to the collision probabilities, equations (3.34) and (3.31), respectively. Inset figure: E-variation
between envelopes at low gas density. The ion-pairs here are not in L2-equilibrium.

Figure 2. Collision Probability PA(Ro, E - kT; A) as a function of radius Ro for: (a) a fized gas
density with A = R,, and (b) for various gas densities proportional to f. Inset figure: P initially increases
linearly with Ro along parabolic envelope and with further increase of R0 tends ultimately to the straight-line
envelope.

Figure S. The recombination rate av/(IrR-) versus: (a) transition-state energy eo = ElkT, or (b)
reaction radius ro = Ro/Re = I/Eo.

Figure 4. Analytic Probabilities PA(Ro, E), equation (6.23) for Coulomb Association within a sphere
of radius Ro = 0.4Re as a function of reduced gas density X = Ro/A. Parabolic (equation (6.26)) and
rectilinear (equation (6.27)) limits c = 0 and e = oo, respectively. Note that L2-equilibrium is assumed.

Figure 5. Comparison of E-averaged association probabilities as a function of reduced gas density
X = Ro/A for ions with (lower curve) and without (upper curve) L2-equilibrium.
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Figure la-b. (a) Probability PA(Ro. E; A), equation (3.27), for collision of an ion in a hyperbolic
(Coulomb) trajectory with the gas within a sphere of radius Ro = O.4Re as a function of reduced gas densitN
X = Ro/A at various reduced Coulomb-orbit energies E = E/kT; (b) Dotted curve: E-averaged probability
pA(Ro; A), equation (3.28), and PA(Ro,kT; A). Solid lines are parabolic (c = 0) and rectilinear (C - ox)
envelopes to the collision probabilities, equations (3.34) and (3.31), respectively. Inset figure: E-variation
between envelopes at low gas density. The ion-pairs here are not in L2-equilibrium
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Figure 2. Collision Probability pA (Ro. E kT; A) as a function of radius Ro for: (a) a fized gas
density with A = R~, and (b) for various gas densities proportional to f. Inset figure., P initially increases
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Figure 4. Analytical Probabilities pA (Ro, E), equation (6.23) for Coulomb Association within a sphere

of radius R0 = OA4R, as a function of reduced gas density X = RO/A for various e. Parabolic (equation

(6.26)) and rectilinear (equation (6.27)) limits c= 0 and e = oc, respectively. Note that L2-equilibrium is

assumed.
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Figure 5. Comparison of E-averaged association probabilities as a function of reduced gas density
X = RO,'A for ions with (lower cu.rve) and without (upper curve) L2 -equilibrium.


